
ISBN	
 978-­‐84-­‐693-­‐6141-­‐2	

	

TTHEHE 	
 	
 TTHIRDHIRD 	
 	
 IINTERNATIONAL	
 NTERNATIONAL	
 WWORKSHOPORKSHOP 	
 	

OONN	
 	
 PPARALLEL	
 ARALLEL	
 AARCHITECTURES	
 AND	
 RCHITECTURES	
 AND	
 	
 	

BBIOINSPIRED	
 IOINSPIRED	
 AALGORITHMSLGORITHMS 	
 	

__ 	
 	

	
 	

THE	
 NINETEENTH	
 INTERNATIONAL	
 CONFERENCE	
 ON	

PARALLEL	
 ARCHITECTURES	
 AND	
 COMPILATION	
 TECHNIQUES	

	

	

	

	

	

EDITED	
 BY	

J.	
 MANUEL	
 COLMENAR	

DANIEL	
 LOMBRAÑA	
 GONZÁLEZ	

	

	

	

	

	

ARCHITECTURE	
 AND	
 TECHNOLOGY	
 OF	
 COMPUTING	
 SYSTEMS	
 GROUP,	

UNIVERSIDAD	
 COMPLUTENSE	
 DE	
 MADRID	

	

UNIVERSITY	
 OF	
 EXTREMADURA	

	

UNIVERSIDAD	
 COMPLUTENSE	
 DE	
 MADRID	

	

I	

	

TTHEHE 	
 	
 TTHIRDHIRD 	
 	
 IINTERNATIONAL	
 NTERNATIONAL	
 WWORKSHOPORKSHOP 	
 	
 OONN	
 	

PPARALLEL	
 ARALLEL	
 AARCHITECTURES	
 AND	
 RCHITECTURES	
 AND	
 BBIOINSPIRED	
 IOINSPIRED	

AALGORITHMSLGORITHMS 	
 	

SEPTEMBER	
 11-­‐15	
 2010	

VIENNA	
 (AUSTRIA)	

	

	

	

	

	

	

	

	

	

	

	

	

EDITED	
 BY	

J.	
 MANUEL	
 COLMENAR	

DANIEL	
 LOMBRAÑA	
 GONZÁLEZ	

	

	

	

	

	

	

	

PRINTED	
 IN	
 UNIVERSIDAD	
 COMPLUTENSE	
 DE	
 MADRID,	
 SPAIN	

SEPTEMBER	
 2010	

II	

	

	

	

	

	

	

	

	

	

	

	

©	
 2010	
 UNIVERSIDAD	
 COMPLUTENSE	
 DE	
 MADRID	

	

RESPONSIBILITY	
 FOR	
 THE	
 ACCURACY	
 OF	
 ALL	
 STATEMENTS	
 IN	
 EACH	
 PAPER	
 RESTS	
 SOLELY	
 WITH	
 THE	

AUTHOR(S).	
 STATEMENTS	
 ARE	
 NOT	
 NECESSARILY	
 REPRESENTATIVE	
 OF	
 NOR	
 ENDORSED	
 BY	
 THE	

UNIVERSIDAD	
 COMPLUTENSE	
 DE	
 MADRID.	
 EACH	
 PAPER	
 MAY	
 BE	
 SAVED	
 AND	
 STORED,	
 AND	
 MAY	
 BE	
 USED	

FOR	
 SCHOLARLY	
 RESEARCH,	
 BUT	
 MAY	
 NOT	
 BE	
 REPUBLISHED	
 IN	
 ANY	
 FORM	
 WITHOUT	
 PRIOR,	
 WRITTEN	

PERMISSION	
 FROM	
 THE	
 AUTHOR(S).	
 OTHER	
 PUBLICATIONS	
 ARE	
 ENCOURAGED	
 TO	
 INCLUDE	
 300-­‐500	

WORD	
 ABSTRACTS	
 OR	
 EXCERPTS	
 FROM	
 ANY	
 PAPER	
 CONTAINED	
 IN	
 THIS	
 BOOK,	
 PROVIDED	
 CREDITS	
 ARE	

GIVEN	
 TO	
 THE	
 AUTHOR(S)	
 AND	
 THE	
 WORKSHOP.	

	

	

	

	

	

	

	

	

	

ADDITIONAL	
 COPIES	
 OF	
 THE	
 PROCEEDINGS	
 OF	
 THE	
 WPABA	
 ARE	
 AVAILABLE	
 FROM:	

JOSÉ	
 L.	
 RISCO	
 MARTÍN	

DEPARTMENT	
 OF	
 COMPUTER	
 ARCHITECTURE	
 AND	
 AUTOMATION	

UNIVERSIDAD	
 COMPLUTENSE	
 DE	
 MADRID	

C/	
 PROF.	
 JOSÉ	
 GARCÍA	
 SANTESMASES,	
 S/N.	

28040	
 MADRID	
 (SPAIN)	

III	

	

	

TTHEHE 	
 	
 TTHIRDHIRD 	
 	
 IINTERNATIONALNTERNATIONAL 	
 	
 WWORKSHOPORKSHOP 	
 	
 OONN	
 	

PPARALLEL	
 ARALLEL	
 AARCHITECTURES	
 AND	
 RCHITECTURES	
 AND	
 BB IOINSPIRED	
 IOINSPIRED	
 AALGORITHMSLGORITHMS 	
 	

VIENNA	
 (AUSTRIA)	

SEPTEMBER	
 11-­‐15	
 2010	

	

	

ORGANIZED	
 BY	

	

	

ARCHITECTURE	
 AND	
 TECHNOLOGY	
 OF	
 COMPUTING	
 SYSTEMS	
 GROUP,	

UNIVERSIDAD	
 COMPLUTENSE	
 DE	
 MADRID	

	

UNIVERSITY	
 OF	
 EXTREMADURA	

	

UNIVERSIDAD	
 COMPLUTENSE	
 DE	
 MADRID	

	

	

SPONSORED	
 BY	

	

	

PACT	
 2010	
 -­‐	
 THE	
 NINETEENTH	
 INTERNATIONAL	
 CONFERENCE	
 ON	

	
 PARALLEL	
 ARCHITECTURES	
 AND	
 COMPILATION	
 TECHNIQUES	

	

IV	

	

	

EDITORS	

	

J.	
 MANUEL	
 COLMENAR	

C.	
 E.	
 S.	
 FELIPE	
 II	
 (ARANJUEZ	
 CAMPUS)	

UNIVERSIDAD	
 COMPLUTENSE	
 DE	
 MADRID	

C/	
 CAPITÁN,	
 39	

28300	
 ARANJUEZ	
 (SPAIN)	

jmcolmenar@cesfelipesegundo.com	

	

DANIEL	
 LOMBRAÑA	
 GONZÁLEZ	

DEPARTMENT	
 OF	
 COMPUTER	
 TECHNOLOGY	
 AND	
 COMMUNICATIONS	

UNIVERSITY	
 OF	
 EXTREMADURA	
 	

CENTRO	
 UNIVERSITARIO	
 DE	
 MÉRIDA	

C/STA.	
 TERESA	
 DE	
 JORNET,	
 38	

06800	
 MÉRIDA	
 (SPAIN)	

daniellg@unex.es	

V	

	

	

THE	
 NINETEENTH	
 INTERNATIONAL	
 CONFERENCE	
 ON	
 PARALLEL	

ARCHITECTURES	
 AND	
 COMPILATION	
 TECHNIQUES,	
 PACT	
 2010	

	

GENERAL	
 CHAIR	

	
 VALENTINA	
 SALAPURA	
 (IBM	
 T.J.	
 WATSON	
 RESEARCH	
 CENTER)	

	
 	

PROGRAM	
 CHAIRS	

	
 MICHAEL	
 GSCHWIND	
 (IBM	
 SYSTEMS	
 &	
 TECHNOLOGY	
 GROUP)	

JENS	
 KNOOP	
 (VIENNA	
 UNIVERSITY	
 OF	
 TECHNOLOGY)	

	

	

	

	

	

TTHEHE 	
 	
 TTHIRDHIRD 	
 	
 IINTERNATIONALNTERNATIONAL 	
 	
 WWORKSHOPORKSHOP 	
 	
 OONN	
 	
 PPARALLEL	
 ARALLEL	

AARCHITECTURES	
 AND	
 RCHITECTURES	
 AND	
 BB IOINSPIRED	
 IOINSPIRED	
 AALGORITHMSLGORITHMS , 	
 , 	
 WWPABA	
 PABA	

20201100 	
 	

	

GENERAL	
 CO-­‐CHAIRS	

	
 JOSÉ	
 L.	
 RISCO-­‐MARTÍN	

	
 FRANCISCO	
 FERNÁNDEZ	

	
 JUAN	
 LANCHARES	

VI	

	

	

WPABA	
 2010	
 INTERNATIONAL	
 PROGRAM	
 COMMITTEE	

	

DAVID	
 ATIENZA,	
 EPFL	
 (SWITZERLAND)	

ERICK	
 CANTÚ-­‐PAZ,	
 YAHOO	
 INC.	
 (USA)	

J.	
 MANUEL	
 COLMENAR,	
 ARTECS	
 RESEARCH	
 GROUP	
 (SPAIN)	

FRANCISCO	
 FERNÁNDEZ,	
 UNIVERSITY	
 OF	
 EXTREMADURA	
 (SPAIN)	

OSCAR	
 GARNICA,	
 UNIVERSIDAD	
 COMPLUTENSE	
 DE	
 MADRID	
 (SPAIN)	

STEVEN	
 GUSTAFSON,	
 GENERAL	
 ELECTRIC	
 GLOBAL	
 RESEARCH	
 CENTER	
 (USA)	

J.	
 IGNACIO	
 HIDALGO,	
 UNIVERSIDAD	
 COMPLUTENSE	
 DE	
 MADRID	
 (SPAIN)	

JUAN	
 LANCHARES,	
 UNIVERSIDAD	
 COMPLUTENSE	
 DE	
 MADRID	
 (SPAIN)	

DANIEL	
 LOMBRAÑA	
 GONZÁLEZ,	
 UNIVERSITY	
 OF	
 EXTREMADURA	
 (SPAIN)	

NOUREDINE	
 MELAB,	
 INRIA	
 (FRANCE)	

SANAZ	
 MOSTAGHIM,	
 UNIVERSITY	
 OF	
 KARLSRUHE	
 (GERMANY)	

JOSÉ	
 L.	
 RISCO-­‐MARTÍN,	
 UNIVERSIDAD	
 COMPLUTENSE	
 DE	
 MADRID	
 (SPAIN)	

GIANDOMENICO	
 SPEZZANO,	
 ICAR-­‐CNR	
 (ITALY)	

	

	

	

VII	

	

	

GENERAL	
 CO-­‐CHAIRS’	
 MESSAGE	

	

Welcome	
 to	
 the	
 Third	
 International	
 Workshop	
 on	
 Parallel	
 Architectures	
 and	

Bioinspired	
 Algorithms,	
 WPABA	
 2010	

	

Dear	
 Participants,	
 Dear	
 Guests,	

	

It	
 is	
 our	
 great	
 pleasure	
 to	
 welcome	
 you	
 to	
 the	
 third	
 Workshop	
 on	
 Parallel	
 Architectures	
 and	

Bioinspired	
 Algorithms	
 (WPABA’10)	
 held	
 in	
 conjunction	
 with	
 PACT	
 2010.	
 This	
 year	
 the	

conference	
 takes	
 place	
 in	
 Vienna	
 (Austria),	
 at	
 the	
 historic	
 Austrian	
 Academy	
 of	
 Sciences.	
 This	

historic	
 building	
 is	
 located	
 in	
 the	
 city	
 center	
 and	
 is	
 within	
 walking	
 distance	
 of	
 many	
 of	
 the	

historic	
 places,	
 such	
 as	
 Stephansplatz,	
 the	
 central	
 point	
 in	
 Vienna,	
 the	
 historic	
 city	
 synagogue,	

the	
 Ring	
 Boulevard	
 and	
 the	
 Imperial	
 Palace.	

Vienna	
 is	
 one	
 of	
 Europe's	
 most	
 historic	
 cultural	
 centers.	
 At	
 the	
 crossroads	
 of	
 east	
 and	
 west,	

north	
 and	
 south,	
 Vienna	
 was	
 the	
 residence	
 of	
 the	
 German	
 Kings	
 and	
 Holy	
 Roman	
 Emperors,	

and	
 the	
 capital	
 of	
 the	
 Austrian-­‐Hungarian	
 Empire.	
 The	
 scenic	
 Danube	
 Valley	
 is	
 home	
 to	
 historic	

castles,	
 monasteries	
 and	
 Roman	
 settlements	
 and	
 border	
 posts	
 dating	
 back	
 over	
 2000	
 years.	

	

The	
 aim	
 of	
 this	
 Workshop	
 is	
 to	
 join	
 a	
 larger	
 number	
 of	
 researchers	
 interested	
 in	
 the	
 synergies	

arising	
 from	
 different	
 but	
 related	
 fields:	
 Parallel	
 Computer	
 Architectures,	
 Parallel	
 and	

Distributed	
 Computing,	
 and	
 Bioinspired	
 Algorithms.	
 The	
 interaction	
 among	
 researchers	
 within	

these	
 fields	
 is	
 becoming	
 usual.	
 On	
 the	
 one	
 hand,	
 parallel	
 architecture	
 designers,	
 and	
 in	

general,	
 system	
 designers	
 are	
 starting	
 to	
 bear	
 in	
 mind	
 Bioinspired	
 Algorithms	
 as	
 general	

optimization	
 tools.	
 These	
 algorithms	
 comprise	
 a	
 set	
 of	
 heuristics	
 that	
 can	
 help	
 to	
 optimize	
 a	

wide	
 range	
 of	
 tasks	
 required	
 for	
 Parallel	
 and	
 Distributed	
 Architectures	
 to	
 work	
 efficiently:	

balancing	
 computer	
 load,	
 fault-­‐tolerance	
 and	
 dependability,	
 thermal-­‐aware	
 design,	
 NoC	

design,	
 and	
 other	
 related	
 problems.	
 On	
 the	
 other	
 hand,	
 the	
 application	
 of	
 Bioinspired	

Algorithm	
 to	
 solve	
 real-­‐world	
 problems	
 has	
 shown	
 that	
 they	
 need	
 high	
 computation	
 power.	

Parallel	
 Architectures	
 and	
 Distributed	
 Systems	
 have	
 offered	
 an	
 interesting	
 alternative	
 to	

sequential	
 counterparts	
 since	
 improvements	
 on	
 parallel	
 architectures	
 are	
 allowing	
 running	

computing	
 intensive	
 Bioinspired	
 Algorithms	
 for	
 solving	
 many	
 difficult	
 engineering	
 problems.	

	

We	
 hope	
 you	
 enjoy	
 the	
 Workshop,	
 and	
 have	
 a	
 nice	
 stay	
 in	
 Vienna.	

	

	

WPABA	
 2010	
 General	
 Co-­‐Chairs	

José	
 L.	
 Risco-­‐Martín	

Francisco	
 Fernández	

Juan	
 Lanchares	

	

	

	

	

	

	

	

	

	

VIII	

	

	

ACKNOWLEDGEMENTS	

	

The	
 WPABA	
 2010	
 International	
 Program	
 Committee	
 selected	
 the	
 papers	
 for	
 the	
 Conference	

among	
 all	
 submissions	
 and	
 we	
 expected	
 a	
 very	
 successful	
 event	
 based	
 on	
 their	
 efforts;	
 so	
 we	

would	
 like	
 to	
 thank	
 all	
 the	
 authors	
 as	
 well	
 as	
 the	
 IPCs	
 and	
 reviewers	
 for	
 their	
 review	
 process.	

A	
 special	
 thank	
 to	
 the	
 organizations,	
 institutions	
 and	
 societies	
 that	
 are	
 supporting	
 and	

technically	
 sponsoring	
 the	
 event:	
 Universidad	
 Complutense	
 de	
 Madrid,	
 University	
 of	

Extremadura,	
 Architecture	
 and	
 Technology	
 of	
 Computing	
 Systems	
 Group	
 and	
 The	
 International	

Conference	
 on	
 Parallel	
 Architectures	
 and	
 Compilation	
 Techniques.	
 Finally,	
 we	
 would	
 like	
 to	

thank	
 all	
 the	
 Workshop	
 Organization	
 Supporters,	
 specially	
 the	
 technical	
 staff	
 who	
 prepared	
 the	

web	
 for	
 the	
 workshop:	
 Adrián	
 Bravo,	
 Ezequiel	
 Lara	
 and	
 Luis	
 Canet.	

	

LOCAL	
 ORGANIZATION	
 COMMITTEE	

	

DANIEL	
 LOMBRAÑA	
 GONZÁLEZ,	
 UNIVERSITY	
 OF	
 EXTREMADURA,	
 SPAIN	

JOSÉ	
 L.	
 RISCO-­‐MARTÍN,	
 UNIVERSIDAD	
 COMPLUTENSE	
 DE	
 MADRID,	
 SPAIN	

J.	
 MANUEL	
 COLMENAR,	
 UNIVERSIDAD	
 COMPLUTENSE	
 DE	
 MADRID,	
 SPAIN	

JUAN	
 LANCHARES,	
 UNIVERSIDAD	
 COMPLUTENSE	
 DE	
 MADRID,	
 SPAIN	

J.	
 IGNACIO	
 HIDALGO,	
 UNIVERSIDAD	
 COMPLUTENSE	
 DE	
 MADRID,	
 SPAIN	

	

IX	

	

	

Index	
 	

	
 	

EFFECTIVE	
 MUTATION	
 OPERATOR	
 FOR	
 NURSE	
 SCHEDULING	
 BY	
 COOPERATIVE	
 GA	
 AND	
 ITS	

PARALLEL	
 PROCESSING	

Makoto	
 Ohki	
 1	

	
 	

COMMUNICATION-­‐FOCUSSED	
 APPROACH	
 FOR	
 REAL-­‐TIME	
 NEURAL	
 SIMULATION	

Paul	
 J.	
 Fox,	
 Simon	
 W.	
 Moore	
 9	

	
 	

P	
 SYSTEMS	
 SIMULATIONS	
 ON	
 MASSIVELY	
 PARALLEL	
 ARCHITECTURES	

José	
 M.	
 Cecilia,	
 José	
 M.	
 García,	
 Ginés	
 D.	
 Guerrero	
 17	

	
 	

GPU-­‐ACCELERATED	
 GENETIC	
 ALGORITHMS	

Rajvi	
 Shah,	
 P.	
 J.	
 Narayanan,	
 Kishore	
 Kothapalli	
 27	

	
 	

HYBRIDIZING	
 MEMETIC	
 ALGORITHMS	
 AND	
 PARTICLE	
 FILTERS	
 FOR	
 VISUAL	
 TRACKING	
 ON	

GPU	

Raúl	
 Cabido,	
 Antonio	
 S.	
 Montemayor,	
 Juan	
 J.	
 Pantrigo	
 35	

	
 	

A	
 PARALLEL	
 MEMETIC	
 ALGORITHM	
 FOR	
 WORKLOAD	
 DISTRIBUTION	
 IN	
 DYNAMIC	
 MULTI-­‐
AGENTS	
 SYSTEMS	

David	
 Millán	
 Ruiz,	
 J.	
 Ignacio	
 Hidalgo	
 45	

	
 	

	
 	

	
 	

Author’s	
 Index	
 53	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

X	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Effective Mutation Operator for Nurse Scheduling by
Cooperative GA and Its Parallel Processing

Makoto Ohki
Division of Information and Electronics, Graduate School of Tottori University

101, 4 Koyama-Minami, Tottori, Tottori 680-8552 Japan
+81 857 31 5231

mohki@ele.tottori-u.ac.jp

ABSTRACT
This paper proposes effective operators for Cooperative Genetic
Algorithm (CGA) to be applied to a real nurse scheduling
problem. The nurse scheduling is very complex task, because
many requirements must be considered for the scheduling. In fact,
the nurse schedule is still made by the hand of a manager, or a
chief nurse, in many general hospitals because the schedule
generated by machine cannot be satisfied. It is hard to revise the
schedule too. In our investigation, even a veteran manager spends
one or two weeks for nurse scheduling. On the other hand, CGA
is very powerful tool to optimize such a combinatorial problem.
We apply CGA to the nurse scheduling problem in this paper. In
our algorithm, the number of nurses at each shift must be
satisfied as a strong constraint. Other constraints are defined as
weak constraints or penalties of the population. CGA is superior
in ability for local search, but is often stagnated as the
unfavorable situation because it is inferior to ability for global
search. To improve these problems, we propose several effective
mutation operators for the nurse scheduling. The mutation yields
small changes in the population when the optimization of the
schedule stagnates. Then the population is able to escape from a
local minimum area. In the real hospital, the change of the
schedule occurs frequently. Such the change of the shift schedule
yields various problems, for example, imbalance of the number
of the holidays and the number of the attendance. Such problems
fall the nursing level of the whole nurse organization. Therefore,
such an imbalance by the change of the nurse schedule must be
broken off. This paper describes a technique to re-optimize the
nurse schedule that the shift schedule has been changed. In this
case a more powerful operator is necessary. We propose a Multi-
Branched Mutation (MBM) operator. By using the MBM
operator, concurrency of the optimization process can be
naturally extracted. Therefore, we have implemented parallel
processing of the nurse scheduling.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Sequencing

and scheduling, H.4.1 [Office Automation]: Time management
(e.g., calendars, schedules), I.1.2 [Algorithms]: Nonalgebraic
algorithms, I.2.8 [Problem Solving, Control Methods, and
Search]: Scheduling, J.3 [LIFE AND MEDICAL SCIENCES]:
Medical information systems

General Terms
Algorithms, Management

Keywords
Nurse Scheduling, Cooperative Genetic Algorithm, Mutation
Operator, Multi-Branched Mutation

1. INTRODUCTION
General hospitals consist of several sections such as the internal
medicine department and the pediatrics department, etc. About
fifteen to thirty nurses work in each section. A section manager
arranges a shift schedule of all the nurses in her/his section every
month. The manager considers more than fifteen requirements
for arranging the shift schedule. Such the arrangement of the
schedule, or the nurse scheduling, is very complex task. In our
investigation, even a veteran manager spends one or two weeks
for the nurse scheduling. This means a great loss of work force
and time. Therefore, computer software for the nurse scheduling
has recently come to be required in the general hospitals [1-5]. In
fact, the nurse schedule is still made by the hand of the manager
in many general hospitals because the schedule generated by
machine cannot be satisfied. It is hard to revise the schedule too.

In this paper, we discuss about generation and optimization of
the nurse schedule by using the Cooperative Genetic Algorithm
(CGA). The conventional CGA optimizes the nurse schedule by
using only crossover operator, because the crossover has been
considered as the only one method which keeps consistency of
relation between chromosomes in the CGA. We have already
proposed an effective mutation operator keeping such consistency
[6-9] for the CGA. This mutation operator effectively works for
the optimization. This mutation operator is activated depending
on the optimization speed. However, there are many parameters
to define this mutation operator. To improve this difficulty, we
propose a simple mutation operator activated periodically.

In the real case, some nurses come to their office on a day
different from the original schedule because of circumstances of
other nurse or an emergency. We discuss such a case that the
nurse schedule has been changed in the past weeks of the current
month [6,7]. By such a change of the shift schedule, various

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

WPABA '10 1 ISBN 978-84-693-6141-2

jlrisco
Cuadro de texto

inconveniences occur, for example, imbalance of the number of
the holidays and the number of the attendance. Such an
inconvenience causes the fall of the nursing level of the whole
nurse organization. Therefore, such the inconvenience should be
broken off. Considering the change of the shift schedule
whenever one week passes, the shift schedule is re-optimized in
remaining weeks of the current month. We discuss a technique to
improve such an inconvenience by re-optimizing the schedule
and a multiplex divergence type mutation operator called as a
Multi-Branched Mutation (MBM) operator, as a good operator of
the search efficiency. This new operator is suitable for the
parallel processing of the nurse scheduling. By performing the
optimization of the shift schedule in a manner of parallel
computation, better solution is acquired in shorter time. We have
implemented such the parallel computation of the nurse
scheduling by using MPI technology.

By using the MBM operator, concurrency of the optimization
process can be naturally extracted. Therefore, we have
implemented parallel processing of the nurse scheduling. This
parallel processing technique is executed by using MPITM
technology. In the night time, there are many PCs which are
inactive in the hospital. The parallel optimization is executed by
using these inactive PCs.

2. NURSE SCHEDULING
2.1 Genetic Coding of Nurse Schedule
An individual and a population in the CGA for the nurse
scheduling are defined as shown in Fig.1. The individual consists
of the sequence of the duty symbols. The duty sequence consists
of thirty fields, since one month includes thirty days in the
practical example. Each individual expresses one-month
schedule of the nurse i. There are not two or more individuals
including the same nurse’s schedule in the population. In the
CGA, the population denotes the whole schedule.

2.2 Performing the Nurse Schedule
For arranging the nurse schedule, the clinical director must
consider many requirements. For example, meeting, training,
requested holiday, these must be accepted, where we assume that

all the requested holidays have been confirmed by the director.
Semi-night and midnight duty should be fairly arranged to all
nurses. And it is prohibited to make nurses work for more than
six consecutive days. We have summarized all the requirements
into the twelve penalties. These penalties are classified into four
penalty groups.

We define a penalty function on shift pattern as the following
equation,

� �¦

��
M

i
iii FhFhFhH

1
3132121111

 (1)

where
iF1
,

iF2
and

iF3
 denote the following penalty functions

about the shift pattern.

We classify consecutive duty patterns for three days into four
categories as shown in Table 1. In this table, Meeting and
training are handled as day time duty, and requested holiday is
handled as holiday. The first category denotes a top priority
pattern, and its penalty value is defined to zero. The second
category denotes a priority pattern, and its penalty value is
defined to one. The third category denotes a compromised pattern,
and its value is defined to two. The final category denotes a
prohibited pattern, and its penalty value is defined to five.
Comparing whole shift schedule of the nurse i with Table 1, the
penalty is given by the following equation.

iD

D

j
iji ppF � ¦

�

1

1
1

 (2)

where
ijp denotes the penalty value as given by Table 1 and iDp

denotes the penalty value defined to the final two day's shift
pattern given by averaging all the penalty value of the
consecutive two days appeared in the Table 1.

It is not preferable for a night duty to be assigned for some nurse
intensively. To suppress this situation, we define the following
penalty function to prohibit X or more night duties to be assigned
for consecutive Y days.

� �
,

otherwise0
),(

0),1(),(max1

/

/

2
°̄

°
®

­
�

��
 ¦

��

SHIFTj
jiN

yjiN
f

xj

jk xnight

xnight

ij
 (3)

Table 1. Duty Patterns for the penalty F1i.

pij duty pattern for three consecutive days

0 DDD DDH DDM DHD DHH DHM DMS HDD HDM
HHD HHH HMS SHH

1 DDS DSH DMH HDH HDS HHS HSH SHD MHD
MHH MSH

2 DHS DSS HHM HSS HMH SHS SSH MDH MDS MHS
MMH

5

DSD DSM DMD DMM HSD HSM HMD HMM SDD
SDH SDS SDM SHM SSD SSS SSM SMD SMD SMS
SMM MDD MDM MHM MSD MSS MSM MMD MMS
MMM

D H S H M H D D・・・nurse X

individual

population

D S
S M

H
D

M
D

H
H

S
D D

D D H
H

M
M S

D D M S
M S HH

S H H M
S R D H・・・

・・・

・・・

・・・nurse A

M D H S H M H D D・・・

nurse B

nurse X

nurse V
nurse W

M
2 3 4 5 27 28 29 30・・・1

duty schedule for one month

Figure 1. An individual coded in chromosome giving shift
schedule of the nurse, X, for one month and a population
including one-month schedules of all nurses. D, S, M and H
denotes a day time duty, a semi-night duty, midnight duty
and holiday respectively.

2

¦

D

j
iji fF

1
22

 , (4)

where),(/ jiN xnight
 denotes the number of night duties assigned

for consecutive x days starting from j-(x-1)th day in the shift
schedule of nurse i , y is defined as XxYy and SHIFT
denotes the set of days which shift is assigned.

In some hospitals, there are some cases to prohibit a specific duty
pattern. If a shift pattern starting from j-th day of nurse i is
prohibited pattern, penalty f3ij is assigned to 1. We define a
penalty function iF3 to implement such the prohibition as follows,

¦

D

j
iji fF

1
33

 . (5)

We define a penalty function on the number of duty days as the
following equation,

� �¦

��
M

i
iii FhFhFhH

1
6235224212

, (6)

where
iF4
,

iF6
 and

iF6
 denote the following penalty functions

about the number of duty days.

The number of duty days should be fairly assigned among nurses.
A total nursing level falls, if many duty days are partially
concentrated to particular nurses. We define the following
penalty functions to suppress unevenness among nurses.

hom
hom

4 NNF ii � , (7)

� � � �0,max0,max5 smid
mid
isem

sem
ii NNNNF ��� , (8)

where hom
iN , sem

iN and mid
iN denote the numbers of holidays,

semi-night and midnight duties respectively assigned to nurse i
for one month. homN denotes the number of Saturdays and
Sundays on the current month.

semN and
midN denotes the

limited numbers of semi-night and midnight duties, defined to
four respectively in this paper.

If some nurses work many consecutive days, total nursing level
falls. We define the following penalty function to restrain
assigning more than X consecutive duty days.

� �
,

),(
0),1(),(max1

6 ¦
��

��

xj

jk serial

serial
ij jiN

xjiNf (9)

¦

D

j
iji fF

1
66

, (10)

where),(jiNserial denotes the number of consecutive duty days
starting from j-(x-1)th day in the shift schedule of nurse i and x is
defined as follows,

,
otherwise1¯

®
­
�

�d

y
XDjX

x (11)

where y denotes the number of the reminder days of the
optimization period.

We define a penalty function on nursing level as the following
equation,

� �¦

��
D

j
jjj FhFhFhH

1
9338327313

, (12)

where F7j, F8j and F9j denote the following penalty functions
about the nursing level.

In our algorithm, the number of the nurses in each duty time is
secured by all means. However, the nursing level deteriorates if
new face nurses are only assigned. The expert or more skilled
nurses should be assigned to keep nursing level. The nursing
level of each nurse is given by ten phases as shown in Table 2.
We assume that the manager evaluates the nursing level in ten
phases. We define the following penalty functions to perform the
nursing level of each duty time.

day
ji

i
i

day
jj MnnLLF �

¿
¾
½

¯
®
­

� ¦ ,0,)(max7
, (13)

sem
ji

i
i

sem
jj MnnLLF �

¿
¾
½

¯
®
­

� ¦ ,0,)(max8
, (14)

mid
ji

i
i

mid
jj MnnLLF �

¿
¾
½

¯
®
­

� ¦ ,0,)(max9
 , (15)

where day
jL , sem

jL and mid
jL denote the lowest nursing level at

date j, and day
jM , sem

jM and mid
jM denote sets of nurses

assigned with day, semi night and mid night duty at date j. In this
paper, we define day

jL to 54 on week day, 33 on Saturday and 28

on Sunday, and sem
jL and mid

jL both to 16.

We define a penalty function on nurse combination as the
following equation,

� �¦

��
D

j
jjj FhFhFhH

1
1243114210414

, (16)

where F10j, F11j and F12j denote the following penalty functions
about the nurse combination.

The manager also considers affinity between the nurses. Because
of bad affinity between a certain nurses assigned to in the same
time, there is the case that the nursing level deteriorates
remarkably. We define a penalty function F10j. When a pair of
such the bad affinity is found in the shift schedule, penalty value
1 is added to the penalty function.

In the time of the midnight shift, only the nurse of few numbers
of people is assigned to. The nursing level of the midnight shift
deteriorates remarkably if the most of a nurse assigned to the

Table 2. Nursing Levels
nurse m1 m2 m3 m4 m5 M6 m7 m8

level 10 9 9 8 8 8 8 8

nurse m9 m10 m11 m12 m13 m14 m15 m16

level 8 7 7 7 7 7 6 6

nurse m17 m18 m19 m20 m21 m22 m23

level 5 5 4 4 3 2 1

3

time are new faces. To restrain such the unfavorable situation,
we define the following penalty function,

� �°
¯

°
®

­

t��

�

¦
�

2,1

2,0

,

2

0
,

,

11
,

mid
newj

N

i

mid
newj

mid
newj

j NiN

N
F mid

newj
 (17)

where mid
newjN ,

 denotes the number of new faces assigned to night

duty on date j. In this paper, we define positions of nurse as
shown by the Table 3. In this table, EX, BB and NF denote an
expert, a backbone and a new face respectively.

In general, one or more expert or more skilled nurses must be
assigned to day time and mid night duty. To restrain such an
unfavorable situation, we define a penalty function, F12j. If no
expert or more skilled nurse is assigned to day time duty or mid
night duty at date j, the function, F12j, is increased with one point.

At the real hospital, the shift schedule which optimized before
the beginning of the current month is often changed. Such a
change of the schedule leads to the disproportion of the duty days.
It causes the overwork of some nurses when such unexpected
situation is ignored. Furthermore, there can be not only the fall of
the nursing level but also the thing leading to a medical accident.
To restrain such an unfavorable situation, we consider the re-
optimization of the shift schedule of the remainder of the current
month. First, we suppose that we have had the optimized shift
schedule at the beginning of the current month. When several
weeks have passed, we suppose that the shift schedule has been
changed. We apply the CGA to re-optimize the shift schedule
covering next four weeks including the remainder of the current
month. However, we had better not change the shift schedule of
the remainder of the current month if possible, because of the
circumstances of each nurse. We define a penalty function, F13,
to optimize the shift schedule while having such a dilemma. The
penalty function, F13, performs the difference between the
original schedule and the newly optimized schedule of the
remainder of the current month.

Finally, we define a total penalty function of the shift schedule as
follows,

135

4

1
FhHE

k
k � ¦

. (18)

The smaller value of the total penalty, E, means the better shift
schedule.

2.3 Cooperative Genetic Algorithm
Basic algorithm of the CGA is shown in Fig.2 [5-7]. CGA applies
the crossover operator to the population and searches so that a
penalty of the whole population becomes small. The crossover

operator selects a pair of parent individual from the population.
Two child pairs are constituted by the two-point crossover.
Taking back these child pairs to the original position of the
parents, a temporal population is configured. The temporal
population is evaluated by the penalty function E. These
procedures are applied to one hundred parent pairs selected from
the population. A population giving the best performance is
selected for the next generation.

2.4 Mutation Operator Depending on
Optimization Speed
Since the nurse scheduling problem discussed in this paper is so
difficult to solve, the optimization often stagnates only by using
the crossover operator. The crossover operator is superior in
ability for local search, but is unfavorable for global search.
When the optimization stagnates for several generations, it is
effective to forcibly give small change to the population.
Therefore we have proposed a mutation operator activated
depending on the optimization speed [8].

The operation of the mutation is shown in Fig. 3. The mutation
operator randomly selects the duty date and selects two nurses.
One of two is stochastically selected as giving the function F1 big
value. Another one is randomly selected. Then the mutation
exchanges each other.

The mutation is activated depending on the optimization speed.
The optimization speed is defined as follows.

¦
�

�
1

0
)(1)(

gN

ig

igE
N

gA , (19)

)()1()(gAgAgV �� , (20)
where Ng denotes the number of generations from the last
mutation to the current generation, A(g) denotes the average
value of the total penalty for Ng generations and V(g) denotes the
optimization speed. When the following condition,

D S
S M

1 2
h
D

M
D

3 4
nurse A
nurse B

S
D D

D D
h

M
M

D M S
M S h

26 27 28

h h M
H D h・・・

・・・

・・・

・・・
・・・

・・・

・・・

M h D Hnurse C S h D・・・

nurse Y
nurse Z

date

D S h M D M S・・・

M h D H S h D・・・

crossover

D S
h

M D M S
・・・M h

D
H S h D

・・・

D S
h M

D M S
・・・M h

D H
S h D

・・・

tow-point crossover

Each pair is taken back to
the original position of
their parents and whole
population is performed.

select two individuals

parent pair

child pair 1

child pair 2

This procedure is repeated for
100 parent pairs. One pair
giving best performance is
selected for the next generation.

D S
S M

1 2
h
D

M
D

3 4
nurse A
nurse B

S
D D

D D
h

M
M

D M S
M S h

26 27 28

h h M
H D h・・・

・・・

・・・

・・・
・・・

・・・

・・・

M h D Hnurse C S h D・・・

nurse Y
nurse Z

date

D S
S M

1 2
h
D

M
D

3 4
nurse A
nurse B

S
D D

D D
h

M
M

D M S
M S h

26 27 28

h h M
H D h・・・

・・・

・・・

・・・
・・・

・・・

・・・

M h D Hnurse C S h D・・・

nurse Y
nurse Z

date

D S h M D M S・・・

M h D H S h D・・・

crossover

D S
h

M D M S
・・・M h

D
H S h D

・・・

D S
h M

D M S
・・・M h

D H
S h D

・・・

tow-point crossover

Each pair is taken back to
the original position of
their parents and whole
population is performed.

select two individuals

parent pair

child pair 1

child pair 2

This procedure is repeated for
100 parent pairs. One pair
giving best performance is
selected for the next generation.

Figure 2. One generation cycle by using crossover operator.

Table 3. Positions of Nurses
m1 m2 m3 m4 m5 m6 m7 m8

chief head head EX EX EX EX EX

m9 m10 m11 m12 m13 m14 m15 m16

EX EX BB BB BB BB BB BB

m17 m18 m19 m20 m21 m22 m23

BB BB NF NF NF NF NF

4

H�)(gV , (21)
is satisfied, the mutation operator is activated. The next mutation
is not activated for Gg generations after the mutation. We call
this the guard interval.

A population just before the last mutation is stored. Comparing
with the last population and the population before this mutation,
the population giving the smaller total penalty value is selected
for the mutation. An example of the change of these values is
shown in Fig. 4.

3. PRACTICAL EXPERIMENT
We have tried experiment of the nurse scheduling with practical
data by the CGA. The number of the nurses is defined to twenty-
three. We suppose that there have been several changes in the
schedule in the past two weeks. The CGA re-optimizes the shift
schedule for the coming four weeks. A part of the schedule on
the first coming two weeks has been already given at the
beginning of the current month. Therefore, difference, F13, is
performed to this part of the optimized schedule against the
original schedule as shown in Fig. 5.

Fig. 6 shows the results of the optimization without the mutation
and results with the mutation depending on the optimization
speed. In one trial, the optimization is executed for 1,000,000
generations. Ten time of the optimization are executed for
comparison. We have defined Gg as 50 from our experience. As
shown in Fig. 6, the mutation effectively works for the
optimization when the threshold is defined from 0.01 to 0.2.

4. IMPROVEMENT
4.1 Periodic Mutation Operator
The mutation with a threshold value except the range from 0.01
to 0.2 has brought unfavorable results. Besides, we must define
the guard interval appropriately. In other words, we have to be
careful to use the mutation depending on the optimization speed.
So that, we propose a simple mutation operator activated
periodically, where we call this the periodic mutation operator. A
procedure flow of the periodic mutation is shown in Fig.7. The
mutation operator is activated periodically every GM generations.
In the periodic mutation, the mutation period GM is the only one
parameter to define itself.
The optimization results by using the periodic mutation operator
are shown in Fig.8. As shown in Fig.8, the periodic mutation
yields results as almost equivalent as the conventional mutation
operator. The mutation period is effective on wide range from 50
to 1000. This means the thing that does not have to mention a
mutation period too much. Fig.9 shows processes of ten trials of
the optimization using the periodic mutation operator with the
mutation period, 700.

1st week 2nd week 3rd week 4th week

k-th month

the shift schedule
acquired at the beginning
of the k-th month

3rd week 4th week 1st week 2nd week

(k+1)-th month

a shift schedule
to be newly optimized

penalty F13 performing
the difference

Figure 5. We expand the nurse scheduling to accept some
changes in the past two weeks. When the two weeks have
past, the coming four weeks are optimized to restrain
inconvenience because of the changes.

Figure 4. An example of the change of values of the total
penalty, the average and the optimization speed. In this
case, the mutation is activated at 384450th, 384600th and
384750th generations.

11 12 13 14 15・ ・ ・ ・ ・ ・

・
・

・
・

・
・

・ ・ ・

n1
n2
n3
n4

n9
n10
n12

(1) randomly select a date.

(2) randomly select two nurses.

(3) exchange the duties
of them at the date.

(2) randomly select two nurses.

11 12 13 14 15・ ・ ・ ・ ・ ・

・
・

・
・

・
・

・ ・ ・

n1
n2
n3
n4

n9
n10
n12

(1) randomly select a date.

(2) randomly select two nurses.

(3) exchange the duties
of them at the date.

(2) randomly select two nurses.

Figure 3. Mutation operator.

Figure 6. Optimization results only with the crossover
operator (CO only) and optimization results with the
mutation depending on the optimization speed with several
threshold values.

5

4.2 Multi-Branched Mutation Operator
The nurse scheduling including such changes in the past part of
the schedule, shown in the chapter 3, becomes very difficult. In
our investigation, two hundreds thousands generations are
enough to simply optimize a schedule of coming four weeks.
However the optimization of the schedule of four weeks
including such the changes requires more than one million
generations. We have also investigated about optimization
process in detail. The optimization sometimes stagnates even
when the periodic mutation operator is applied. In the case of the
most that the optimization stagnates, though the penalty F1 has
not been still decreased, other penalties has become almost zero.

Therefore we need a technique to decrease the penalty F1 when
the optimization has been stagnated. In this paper, we propose a
new mutation operator to improve this problem. The flow of this
technique is shown in Fig.10. This technique is a multiplex
divergence type mutation operator, where we call it Multi-
Branched Mutation (MBM) operator.

The procedure of MBM operator is as follows. The number of
nurses at each shift must be secured. Therefore, MBM
determines a mutation point giving the largest value of the
penalty F1. MBM replaces the mutation point to other shift
candidates of the day same as the mutation point, where we try
three kinds of method to decide the shift candidates. The
mutation point is given as a middle day of consecutive three days.
If a fixed duty is not included on the middle day, the MBM
decides it as a mutation position, (mp, d). Else if fixed duty is
included on the middle, the MBM checks it in order of the third
day and the first day and decides either as a mutation position. If
all three days contain fixed duty respectively, select a position
giving the next bigger value of the penalty F1. Figure 9 shows the
case that the middle day does not contain such a fixed duty.
Second, the MBM selects several candidate positions, (c1, d), (c2,
d), ..., (cX, d), on the same day, d, which does not contain such a
fixed duty. We define the number of the candidate positions is
NMBM.Third, the MBM exchanges duty contents between the
mutation position and all the candidate positions. By means of
these procedures, we acquire new Y mutated populations. The
CGA individually optimizes those mutated populations by using
the crossover operator for GM generations, where we call the
individual optimization a thread. When all the threads have been
completed, The MBM selects the best population for the next
generation.

We investigate three kinds of method to decide the candidates. In
the first method, MBM1, the mutation position (mp, d) is
replaced with the all candidates, (c1, d), (c2, d), ..., (cX, d), and X
new populations are forcibly generated. MBM1 must replace
even a candidate giving no penalty value. This may cause a
useless search, and it is not an efficient method. In the second

d

pm
1c

2c

Yc

d

pm
1c

d

pm

2c

d

pm

Yc

thread 1

thread 2

thread Y

optimization for GM generations

select the best
population

population

Figure 10. Multi-branched mutation operator.

crossover
operator

initializeSTART

END

g=GEND？
Y

N g%GM=0？

mutation
operator

N

Y

g:=g+1

Figure 7. Procedure flow of CGA with the periodic
mutation operator.

Figure 9. Ten trials of the optimization using the periodic
mutation operator with the mutation period, 700.

Figure 8. Optimization results by the periodic mutation
operator with several mutation periods. We have tried to
set the mutation period from 50 to 5000.

6

method, MBM2, the following sub-penalty Z of a candidate (c, d)
are calculated,

¯
®
­

���
�����

)otherwise(
)1(

),(
632

632

cdcdcdcD

cdcdcdcd

fffp
Djfffp

dcZ (22)

MBM2 selects NMBM candidates giving larger Z value for the
MBM operation. In the third method, MBM3, NMBM candidates
giving larger F1i value are selected for the MBM operation.

4.3 Parallel Processing of Nurse Scheduling
Nurse scheduling is very hard task even on a computer. In our
investigation, an optimization for one million generations takes
more than one hundred minutes. Actually around 10 time of
optimization are necessary to get a good optimization result. This
means enormous time and computational costs. If a user is not
satisfied with those results, she/he retry several time of
optimization. On the other hand, many computers are stopping at
the late-night hospital. If parallel computation of the optimization
is implemented by using these sleeping resources, we can
achieve speedup of the nurse scheduling.

The MBM contains concurrency essentially. Those threads can
be concurrently computed respectively, because optimization of
these threads are independent each other. In other words the
MBM is an operator suitable for parallel computation. We have
implemented parallel computation of the CGA based on the
MBM by using MPITM technology. We already proposed several
parallel processing techniques for the nurse scheduling [9]. The
technique we propose in this paper is different from the
conventional one.

Figs.11-13 show the optimization results by using MBM1,
MBM2 and MBM3 with several generation ranges that the
operation is applied. We have subtracted the number of
generations executing MBM from the whole generations so that
the evaluation number of times of the trial of MBM becomes the
evaluation number of times same as the trials of the conventional
technique. In other words, the evaluation number of times of the
total penalty E is equal to when the conventional technique is
applied. We have prepared two PCs equipping two CPUs
respectively for the trial. In our implementation, one CPU is
assigned to a server thread and an optimizing thread, and others
are assigned to the optimizing thread.

In the case of MBM1, splendid schedule has been brought when
MBM1 is applied to the middle stage of the whole generations.
When MBM1 is applied to the final stage of the whole
generations, the optimization results converge on the little value.
When MBM1 is applied to whole generations, the optimization
has unfavorably progressed. In the case of MBM2, splendid
schedule has been brought when MBM2 is applied to the middle
and final stages of the whole generations. Especially, when
MBM2 is applied to the final stage of the optimization, the
results converge on the splendid schedule. When MBM2 is
applied to whole generations, the optimization has not progressed
favorably nether. In the case of the MBM3, the optimization
results converge on a good value even when MBM3 is applied to
any stage of the whole generations. However, MBM3 has not
brought such the splendid solution.

5. CONCLUSION
This paper has shown a technique of nurse scheduling by using
the CGA. The CGA effectively work to find a good schedule.
However, the nurse must often attend unlike the original
schedule in the real hospital, because of the circumstances of
other nurse or an emergency and so on. We have discussed a case
that the nurse schedule has been changed in the past weeks. To

Figure 11. Optimization results by MBM1 with several
generation ranges that MBM1 is applied.

Figure 12. Optimization results by MBM2 with several
generation ranges that MBM2 is applied.

Figure 13. Optimization results by MBM3 with several
generation ranges that MBM3 is applied.

7

re-optimize the changed schedule, we have defined a penalty
function performing the difference. Such re-optimization of the
nurse schedule becomes very difficult problem to CGA only with
the crossover operator. Then we need new techniques to search
for good schedule effectively. To solve this difficulty, we
proposed the mutation operator activated depending on the
optimization speed. Although this mutation operator effectively
searches in the solution space of the nurse scheduling problem,
several parameters must be defined. To improve this
inconvenience, we have proposed the periodic mutation operator.
The periodic mutation shows the performance that is about the
same as conventional mutation. Besides, the periodic mutation
needs only one parameter, the mutation period, which there is no
need to mention too much. We have proposed MBM to optimize
the nurse schedule more efficiently, and to shorten optimization
time. Besides, MBM brings an effect of multiplexing a search
process naturally. We have implemented the parallel processing
of the nurse scheduling using MBM.

6. ACKNOWLEDGMENTS
This research work is supported by Tottori University Electronic
Display Research Center (TEDREC).

7. REFERENCES
[1] Ikegami, A. Algorithms for Nurse Scheduling, Proc. of 11th

Intelligent System Symposium, (2001), 477-480.
[2] Goto, T., Aze, H., Yamagishi, M., Hirota, M. and Fujii, S.

“Application of GA, Neural Network and AI to Planning
Problems,” NHK Technical report (1993), No.144, 78-85.

[3] Kawanaka, S., Yamamoto Y., Yoshikawa D., Shinogi T.
and Tsuruoka N. Automatic Generation of Nurse Scheduling
Table Using Genetic Algorithm, Trans. on IEE Japan,
vol.122-C, No.6 (2002), 1023-1032.

[4] Inoue, T., Furuhashi, T., Maeda H. and Takabane, M. A
Study on Interactive Nurse Scheduling Support System
Using Bacterial Evolutionary Algorithm Enegine, Trans. on
IEE Japan, vol.122-C, No.10 (2002), 1803-1811.

[5] Itoga, T., Taniguchi N., Hoshino Y. and Kamei K. An
Improvement on Search Efficiency of Cooperative GA and
Application on Nurse Scheduling Problem, Proc. of 12th
Intelligent System Symposium, (2003), 146-149.

[6] Ohki, M., Morimoto, A. and Miyake, K. Nurse Scheduling
by Using Cooperative GA with Efficient Mutation and
Mountain-Climbing Operators, 3rd International IEEE
Conference Intelligent Systems (2006), 164-169.

[7] Ohki, M., Uneme, S., Hayashi, S., Ohkita, M. Effective
Genetic Operators of Cooperative Genetic Algorithm for
Nurse Scheduling, 4th International INSTICC Conference on
Informatics in Control, Automation and Robotics (2007),
347-350.

[8] Uneme, S. Kawano, H., Ohki, M. Nurse Scheduling by
Cooperative GA with Variable Mutation Operator, Proc. of
10th ICEIS (June 12-16, 2008), INSTICC, 249-252.

[9] Ohki, M., Uneme S., Kawano H. Parallel Processing of
Cooperative Genetic Algorithm for Nurse Scheduling, Proc.

of the 2008 4th International IEEE Conference Intelligent
Systems (Sept. 6-8, 2008), vol.2, session 10, 36-41.

8

Communication-focussed approach for real-time neural
simulation

Paul J Fox, Simon W Moore
University of Cambridge

Computer Laboratory
JJ Thompson Avenue

Cambridge
CB3 0FD

United Kingdom
{paul.fox, simon.moore}@cl.cam.ac.uk

ABSTRACT
Communication on- and off-chip now dominates the power
and performance of modern electronic circuits. We propose
the use of modern field programmable gate arrays (FPGAs)
to investigate the communication properties of systems ca-
pable of simulating one billion neurons. Each FPGA pro-
vides gigabits of chip-to-chip communication bandwidth and
on- and off-chip memory bandwidth. The FPGA structure
allows us to control the allocation of this bandwidth in great
detail allowing optimisations and analysis to be performed.
We present our architectural explorations and initial find-
ings.

1. INTRODUCTION
The structure of an individual neuron and its response to
stimulus is well known, as are the complex functions per-
formed by different regions of the human brain. While the
amount of data processing that can be performed by a sin-
gle neuron is very limited, the human brain as a whole is
believed to be (for some tasks at least) the most complex
computer in existence. How do we connect many simple
components to form such a complex system?

Neurons can communicate with other neurons by produc-
ing action potentials. These travel via synaptic junctions,
which can alter the magnitude of action potentials that pass
through them and also delay their propagation. Complex
functional units are formed from networks of these commu-
nicating neurons. However, the topology and communica-
tion characteristics required to perform useful functions are
not well understood as these are difficult to observe with
sufficient resolution in biological systems. To overcome this
limitation, some neuroscientists design experimental neural
networks with the aim of mimicking brain functions, and use
simulation tools to help refine them.

This paper presents a neural network simulation architec-
ture to support real-time simulation of one billion neurons.
Real-time simulation of one billion neurons operating in-
dependently would be relatively straightforward, with the
only requirement being sufficient available resources. How-
ever such a system would not produce useful results without
also simulating the complex communication between neu-
rons, and one billion neurons needs to communicate action
potentials over a network of around one trillion synapses.

We begin by investigating the similarities and difference in
the communication properties of biological neural networks
and the electrical circuits that will be used to simulate them.
This leads us to the conclusion that it is feasible to create a
simulation system for large neural networks using a number
of processing nodes, connected using a grid or torus topol-
ogy.

In order to simulate biological neural networks using an elec-
trical system we must select a suitable simulation algorithm.
We have chosen Izhikevich’s model [10], as we believe that
it is best suited to our goal of real-time simulation of one
billion neurons. This algorithm is analysed to determine
its communication properties and the implications for the
design of our neural network simulation architecture.

We then focus on the structure of a processing node, and in
particular how it could be most efficiently implemented us-
ing a field programmable gate array (FPGA). The properties
of an FPGA, and in particular the relative lack of on-chip
memory compared to what could be implemented in a cus-
tom application specific integrated circuit (ASIC), require
that we make careful use of on- and off-chip communica-
tion resources, and especially off-chip memory bandwidth,
to create a system which can perform real-time simulation
of the required number of neurons and their communication.
We propose an architecture for a processing node that has a
number of features that minimise the amount of communi-
cation required to perform the simulation, and also help to
rationalise it so that it is better suited to the communica-
tion properties of the FPGAs used to implement processing
nodes, the network used to connect them and their off-chip
memory resources.

WPABA '10 9 ISBN 978-84-693-6141-2

We then discuss related work, focussing on how communi-
cation issues have been handled, and limitations that were
encountered. Handling off-chip communication and making
efficient use of off-chip memory bandwidth are found to be
common obstacles to creating large simulations. Finally we
discuss preliminary results and provide conclusions.

2. COMMUNICATION PROPERTIES
Comparing and contrasting the communication properties of
biological neural networks and electrical circuits allows us to
make informed choices when designing the architecture of a
large-scale neural network simulator. There are some com-
munication properties where biological neural networks and
electrical circuits show significant similarities. We can ex-
ploit these similarities to make our simulation architecture
more efficient. In other cases there are marked differences in
communication properties. We may be able to exploit these
differences to further increase the efficiency of our simula-
tion architecture. In other cases we must look for ways of
working around differing communication properties which
would otherwise have an adverse effect.

Bassett and Greenfield [2] find that communication in bio-
logical neural networks exhibits a significant degree of local-
ity and modularity, with neurons which are close in phys-
ical space networked into densely connected sets. Larger
sets which perform more complex functions are then formed
from smaller sets with relatively few additional connections.
Hence the majority of communication between neurons cov-
ers short physical distances, with there being some medium
distance communication, and much less over longer dis-
tances. However, it is still possible that any neuron could
communicate an action potential with any other neuron,
breaking these principles of modularity and locality. This
type of communication will be referred to as “non-uniform”
in the following discussion.

The locality and modularity communication properties of
biological neural networks compare well with those of a sim-
ulation architecture composed of multiple processing nodes,
connected using a grid or torus topology. The majority of
communication will be kept on-chip, which is both power
and resource efficient, particularly if we use an on-chip net-
work [4]. The majority of off-chip communication will be
nearest neighbour but we must still deal with the possibility
of long distance communication.

Non-uniform communication is fundamentally unsuited to
implementation using an FPGA, as it quickly consumes
routing resources, and ultimately leads to functional units
being rendered unusable as the switch nodes that they use to
connect to other parts of the FPGA are saturated by rout-
ing other communication. Therefore we must find a way
of transforming non-uniform communication into uniform
communication. This can be achieved by implementing a
packet switched network to communicate between process-
ing nodes, with any non-uniform communication travers-
ing as many processing nodes (each of which will contain
a network router) and off-chip communication links as are
necessary for it to reach its destination. However, replac-
ing point-to-point wiring with a packet switched network
will introduce communication latency, particularly if several
processing nodes need to be traversed. Are biological neural
networks tolerant of such latency?

While the time of arrival of action potentials at their target
neurons is believed to be a significant factor of data pro-
cessing by neural networks, the resolution requirements of
this timing are believed to be of the order of one millisecond,
particularly as biological neural networks lack a global clock.
In contrast, the latency introduced by traversing the router
in a processing node implemented using an FPGA would be
no more than a few clock cycles, and the off-chip commu-
nication links used to connect processing nodes will have a
bandwidth of many gigabits, particularly if the high-speed
serial transceivers (which are integrated into many recently
introduced FPGAs) are used. Hence there is ample time
available for the simulation architecture to communicate an
action potential from one simulated neuron to another, even
if it is necessary for the communication to traverse several
processing nodes and off-chip communication links.

However, we must consider how congested the on- and off-
chip networks in the simulation architecture could get when
we scale to simulating a biological neural network with up
to one billion neurons. This depends on communication fre-
quency and bandwidth requirements. Mead [15] observed
that biological neurons communicate via action potentials
at a frequency of no more than a few Hertz. The amount of
“data” communicated by a single action potential is rather
limited, consisting only of the magnitude of the action po-
tential, its timing and (implicitly) the neuron from which it
originated. However, the fan-out of a single action potential
can be of the order of one thousand. While simple mes-
sages transmitting action potentials could be communicated
both within a processing node and on off-chip communica-
tion links at a frequency of around 100MHz, creating one
thousand separate messages in the simulation architecture
in response to the creation of a single action potential by a
simulated neuron would lead to massive network congestion,
so we must find ways to keep the number of distinct mes-
sages required to communicate an action potential to all of
its targets to a minimum.

We must also consider how the simulation architecture will
determine the targets of action potentials. With one bil-
lion neurons and a fan-out of one thousand, we will need to
store data describing at least one trillion action potential tar-
gets, with additional data required to control routing when
communication traverses multiple processing nodes. This
quantity of data exceeds the capacity of available on-chip
memory, particularly in an FPGA where on-chip memory is
limited to the amount of embedded Block RAM (BRAM).
Hence we must store action potential target data in off-chip
memory. Determining the destinations of action potential
communications efficiently is critical to keeping a neural net-
work simulation running in real-time. Hence, while modern
FPGAs provide gigabits of off-chip memory bandwidth, we
must nonetheless find ways of making accesses to data held
in off-chip memory as efficient as possible.

In summary, a simulation architecture composed of multi-
ple processing nodes implemented using FPGAs, connected
in a grid or torus topology using high-speed serial commu-
nication links is well suited to simulating biological neural
networks with around one billion neurons, connected by tril-
lions of synapses. The challenges that we face are making
efficient use of on- and off-chip networks to avoid excessive

10

congestion and saturation, and making efficient use of off-
chip memory resources. However, before we can implement
a simulation architecture we must select and analyse an al-
gorithm which can be used to simulate biological neural net-
works.

3. SIMULATION ALGORITHM
We must select a suitable algorithm to simulate the gen-
eration of action potentials by biological neurons and their
communication via synapses. If we are to achieve our goal
of simulating one billion neurons in real-time, this algorithm
must make efficient use of processing and communication re-
sources.

We have chosen an algorithm proposed by Izhikevich [10] as
we believe that it offers a good compromise between biolog-
ical accuracy and computational efficiency. Izhikevich has
compared his algorithm to many others that have been pro-
posed [11], including that by Hodgkin and Huxley [8] which
is used by many other neural network simulation systems.

Izhikevich’s algorithm uses two floating-point equations, one
quadratic and one linear, to simulate the behaviour of a
single neuron. Equation 1 represents the membrane voltage
of the neuron and Equation 2 the refractory voltage. These
equations have two variables (v and u) and two constants
(a and b). An additional variable, I represents the current
incident action potential to the neuron. It is reset to zero
after every evaluation of the equations for that neuron.

v′ = 0.04v2 + 5v + 140 − u+ I (1)

u′ = a(bv − u) (2)

An action potential is produced if v >= 30mV , in which
case v and u are reset by Equations 3 and 4 respectively.
This requires two more equations with two constants (c and
d).

v′ = c (3)

u′ = u+ d (4)

These equations are designed to operate in continuous time.
Since continuous time simulation is not possible without us-
ing analogue circuits, we must approximate it by using dis-
crete time simulation with sufficiently small time steps. Jin,
Furber and Woods [12] propose a time step length of 1ms,
which they believe samples the values of Equations 1 and 2
frequently enough to model the creation of action potentials
by neurons accurately. Using discrete time simulation also
allows us to time-multiplex resources on processing nodes
amongst many simulated neurons, while still giving the ap-
pearance of real-time simulation. This significantly reduces
resource requirements compared to implementing dedicated
resources for every simulated neuron, which allows us to
simulate more neurons per processing node than would oth-
erwise be the case.

The described algorithm uses floating-point arithmetic, and
hence requires floating-point computation hardware and

data storage. Jin, Furber and Woods [12] proposes an imple-
mentation which uses only integer arithmetic, hence allowing
the algorithm to be evaluated by a simple RISC processor
with a short pipeline. This strategy makes efficient use of
both power and resources, as well as minimising the time
taken to evaluate the state of a single neuron. They also
conclude that the variables and constants associated with
Equations 1 to 4 can be stored as 16 bit signed integers with-
out significant loss of precision or change in the observable
generation of action potentials. Hence the data associated
with each neuron can be stored in 16 × 7/8 = 14 bytes.
Since off-chip memory systems tend to prefer dealing with
data units which are powers of 2, this will be rounded up to
16 bytes. Therefore a simulation with one billion neurons
will require 1.6 × 1010 bytes to store data relating to the
neurons being simulated, which is approximately 16GB.

The effects of a neuron generating an action potential are
specified by a sequence of three-tuples consisting of the tar-
get neuron, the magnitude of the action potential transmit-
ted to the target neuron via a synapse (referred to as a
“synaptic weight”) and the propagation delay introduced by
this synapse. The synaptic weight (which may be negative)
should be added to the target neuron’s current I value af-
ter the specified delay. Each neuron needs to be assigned a
unique identifier so that action potentials can be routed to
it from any other neuron in the system. As we wish to sim-
ulate one billion neurons, this identifier will need at least 30
bits, although it is advantageous to increase this to 32 bits
both to allow for future expansion and since this is equal to
the word size supported by most off-chip memory systems.
We also need to consider the data required to represent the
delay and synaptic weight. In [12], delays of up to 16ms
are considered. With a time-step length of 1ms, 4 bits are
required to represent the delay. It should be possible to rep-
resent the synaptic weight with 12 bits, and hence the total
amount of data required to represent a synapse, including
neuron identifier, delay and synaptic weight, is 6 bytes.

In a simulation with one trillion synapses, 6×1012 bytes will
be required to represent them, which is approximately 6TB.
Therefore the data storage requirements of the algorithm are
dominated by the data required to represent synapses rather
than that used to represent neurons. Even a small change
in the amount of data required to represent a single synapse
will have a significant effect on the total data requirements
of the algorithm for simulated neural network of this size.

To avoid putting additional load on the off-chip network
beyond that already placed on it by the communication of
action potentials, each processing node will be restricted to
accessing its own off-chip memory. The capacity and band-
width requirements of this memory then depend on the num-
ber of neurons which will be simulated by a single processing
node. If we assume that each processing node will simulate
ten thousand neurons, then around 100MB of data will be
required to represent both the simulated neurons and their
synapses. This is a straightforward amount of memory to
implement in a single processing node, however we must
consider the bandwidth which will be required.

[12] suggests that Equations 1 and 2 are evaluated every 1ms
so that the the values of v and u can be sampled with suf-

11

ficient accuracy. A simulated neuron could create an action
potential whenever its equations are evaluated. However,
Mead [15] suggests that biological neurons actually produce
action potentials at a rate of just a “few hertz”. Therefore
we will suggest that action potentials can be produced by
a neuron at an average rate of 10Hz. With ten thousand
neurons simulated by one processing node and a fan-out of
one thousand, the bandwidth requirements of one process-
ing node will be of the order of 600MB/s for synaptic data
and 160MB/s for the variables and parameters of Equations
1 to 4. Making allowance for the additional data required
to perform routing of action potentials between processing
nodes, the total bandwidth required is likely to be around
1GB/s. This is of the same order of magnitude as the band-
width provided by modern off-chip memory controllers, and
so we must make careful use of the available bandwidth if
we wish to keep the simulation running in real-time.

We also need to consider the costs associated with evaluating
the I value for each neuron, which is an input to Equation
1. With a fan-in of one thousand and a maximum firing
rate of 10Hz we would expect to have to sum ten synap-
tic weights per neuron per 1ms cycle in addition to evalu-
ating the Izhikevich equations themselves. Given that [12]
was able to reduce these equations to ten ARM instructions,
it can be seen that the summing of synaptic weights takes
around half of the processing time of the algorithm.

Considering the data and processing time requirements of
the algorithm together, it can be seen that the communica-
tion and application of synaptic weights takes a significantly
greater proportion of total resources, particularly off-chip
memory bandwidth, than evaluation of the Izhikevich equa-
tions. Our implementation must take account of this if we
are to achieve our goal of the real-time simulation of one
billion neurons connected by one trillion synapses.

4. IMPLEMENTATION
Based on our observations, we have developed the architec-
ture for a processing node within a neural network simu-
lation system shown in Figure 1. This has separate units
to evaluate the Izhikevich equations, looking up and rout-
ing action potential messages and looking up and accumula-
tion of action potential effects. An implementation has been
produced using an Altera Stratix III FPGA on a Terasic
DE3 evaluation board. Off-chip memory is provided using a
DDR2 SDRAM interface, with the memory controller being
a soft component provided by Altera and programmed into
the FPGA.

The Izhikevich equations are evaluated in the Equation Pro-
cessor, with a message sent to the Lookup Engine via the
Input Router whenever an action potential is generated. The
Input Router also takes in action potential messages that ar-
rive from the off-chip communication links. Messages from
the Input Router are then fed to the Lookup Engine. This
determines what to do with each message. This can involve
sending one or more messages on the off-chip communica-
tion links to neighbouring processing nodes. Alternatively
messages can be sent to the Accumulator instructing it to
apply a series of action potential effects to sets of simulated
neurons hosted by this processing node, with the application
of these effects being delayed as specified.

4.1 Equation Processor
The Equation Processor is responsible for evaluating the cur-
rent state of the neurons that it hosts, using the Izhikevich
equations presented in Section 3.

At present the processor is implemented using an Altera
NIOS II soft core, with the simulation algorithm imple-
mented in software written in C++. Since there is insuffi-
cient on-chip memory available in the FPGA, the parameters
of all neurons and synapses are held in the off-chip SDRAM,
which is accessed via the Avalon interconnect, which is a
form of on-chip network, with the exception of the I values,
which are held in the Accumulator, and also accessed via
the Avalon interconnect.

The Equation processor is notified at the start of every 1ms
time step by an external interval timer. This raises an in-
terrupt in the processor, which triggers the software which
evaluates the Izhikevich equations for each of the neurons
which is hosted by the processing node (the I values). The
equations for each neuron are evaluated sequentially, and
provided that evaluation is completed for all neurons before
the next time step begins, this part of the simulation will
run in real-time. This requires that the total time taken to
both evaluate the instructions used to implement the algo-
rithm and to fetch the data that it requires does not exceed
1ms. The processor is theoretically capable of executing one
instruction for every stage of its pipeline per clock cycle, but
this will be reduced by pipeline stalls introduced when in-
structions and data which need to be fetched are not present
in the processor’s caches.

Instruction cache misses will be rare in the program used to
implement the neural simulation algorithm since the core of
the program is a vary small loop cycling over each of the
neurons in turn, executing identical code for each neuron to
evaluate Equations 1 and 2. The only difference in behaviour
between neurons is a result of a neuron creating an action
potential, which requires evaluating Equations 3 and 4 to
reset the values of v and u and sending an action potential
message to the Input Router.

Data for each of the neurons hosted by a processing node is
held sequentially in the SDRAM. This leads to the SDRAM
being accessed by the Equation Processor in a continuous
band once per 1ms time step. Consequently there is very
good spatial locality in these SDRAM accesses but almost
no temporal locality, save that updated v and u values are
written back to the off-chip SDRAM once they have been
evaluated. Accesses to the SDRAM can thus be made effi-
cient by using a data cache with prefetching and long burst
reads. We aim for the data relating to the neurons whose
equations are next to be evaluated to be present in the data
cache, avoiding any need for the processor pipeline to stall.

The I values are held in an on-chip memory block within the
Accumulator, which is the only significant block of on-chip
memory in a processing node, except for the Equation Pro-
cessor’s caches. Accesses to this on-chip memory block over
the Avalon interconnect will not lead to significant pipeline
stalls as it should be possible to perform such access within
one clock cycle.

12

Equation

Processor

Input

Router

Lookup

Engine
Output

Router
Accumulator

Off-Chip Communication Ports

Off-Chip Memory Interface

Figure 1: Processing node architecture

When a simulated neuron produces an action potential, the
Equation Processor sends a message to the Input Router,
which is then passed to the Lookup Engine. This message
consists of a reference to a region of the off-chip SDRAM
which is owned by the Lookup Engine. This reference is a
32 bit combination of the address and length of the region
being referenced. The Equation Processor sends the message
by writing to an address within the processor’s memory map,
which causes the data that is written to that address to be
placed into a hardware FIFO in a custom communication
component which is attached to the Avalon interconnect.

The number of simulated neurons that can be hosted by a
single processing node can potentially be increased by using
multiple Equation Processors, each of which will be respon-
sible for evaluating the Izhikevich equations for a distinct set
of simulated neurons. The DDR2 SDRAM is able to inter-
leave memory accesses from multiple clients attached to the
Avalon interconnect, so using multiple equation processors
which share a single SDRAM will allow us to make more
efficient use of the bandwidth to this off-chip memory.

4.2 Lookup Engine
The Lookup Engine determines the destination of action po-
tentials, which may have originated either in a local Equa-
tion Processor or from the Lookup Engine in another pro-
cessing node, via an off-chip communication link. It is im-
plemented as a custom hardware block defined using the
Bluespec SystemVerilog hardware description language [1],
and connected to the off-chip SDRAM via the Avalon inter-
connect.

Action potential messages contain a memory reference (ad-
dress and length) to a block of action potential routing in-
structions in a table held in off-chip SDRAM. A burst read
is performed to fetch each of these routing instruction blocks
from the off-chip SDRAM. The data which is returned con-
sists of a series of routing instructions, which have two pos-
sible formats. The first format is a message containing the
address of another processing node along with a memory ref-
erence to be sent to the Lookup Engine in that node. This

message is passed to the Output Router and then routed
to the appropriate off-chip communication link. The other
format is a message to be passed to the Accumulator via the
Output Router, containing a memory reference and a delay.
The memory reference points to a block of action potential
effects in a region of the off-chip SDRAM which is owned by
the Accumulator. These affects should be applied after the
delay specified in the message.

4.3 Accumulator
The Accumulator is responsible for storing and updating the
values of the current incident action potential (I values) for
each simulated neuron hosted by the processing node. It also
implements the delays in communication of action potentials
that are essential to the operation of neural networks. There
is a single Accumulator per chip, regardless of how many
Equation Processors are implemented.

When an Equation processor reads an I value, the Accu-
mulator resets it to zero, ready to calculate a new I value
for the next time step. At present the Accumulator’s in-
ternal memory is memory-mapped into the address space
of the Equation processor, and accessed over the Avalon
interconnect. Given the frequency of such accesses, replac-
ing this with a dedicated communication channel from each
Equation Processor to the Accumulator brings a significant
performance improvement.

Incoming messages from the Output Router contain a delay
magnitude and a memory reference to a block of action po-
tential effects in the off-chip SDRAM. Each of these effects
contains a neuron identifier and an action potential to be
summed with the current I value for that neuron. The de-
lay magnitude indicates the number of time steps that must
pass before the effects stored in the referenced effect block
are applied. The Accumulator shares the Equation Proces-
sor’s interval timer so that it can determine when a new time
step begins.

Delays are implemented using sixteen hardware FIFOs, cor-
responding to the maximum magnitude of delay allowed by

13

the simulation algorithm. These FIFOs spill part of their
contents to the off-chip SDRAM if they become full. The
magnitude of delay that each FIFO currently represents is
determined in a circular fashion relative to a pointer, which
indicates the FIFO that currently represents a delay of zero,
as proposed in [12]. The delay that each hardware FIFO
represents can hence be updated at the start of a new time
step simply by incrementing the pointer. When a message
arrives from the Output Router, the reference to an action
potential effect block is enqueued to the FIFO which repre-
sents the delay specified in the message.

When a new time step begins, one of the hardware FI-
FOs will have been promoted to represent a delay of zero.
The Accumulator takes references to action potential effect
blocks from this hardware FIFO and initiates a burst read
to the off-chip SDRAM to retrieve them. A new burst read
is initiated with a new effect block reference whenever per-
mitted by the memory controller until the hardware FIFO
is empty. The off-chip memory returns a stream of action
potential effects, which are input into a simple pipeline. The
first stage of the pipeline loads the current I value from the
Accumulator’s internal memory. The next stage performs
an addition to apply the extra action potential and then
the final stage stores the new I value back to the internal
memory.

5. RELATED WORK
Neural network simulation is often performed in software,
with one example of this approach being the Blue Brain
project [14]. While software simulations allow for very large
networks to be simulated very accurately (depending on the
choice of simulation algorithm), this cannot be done in real-
time for all but the smallest networks. Hence pure software
simulation will not be discussed further here.

Much existing research into hardware neural network simu-
lation has produced systems with hardware blocks which
simulate neurons and synapses, connected together with
groups of wires to transmit action potentials between them,
an example being that by Indiveri, Chicca and Douglas [9].
The mapping from a biological neural network to the sim-
ulation hardware is very literal, in this case using analogue
circuits, which makes the implementation easy to under-
stand. However, even if digital circuits are used throughout,
this approach suffers from particular difficulty with commu-
nicating action potentials between simulated neurons, as the
wires used to facilitate this communication quickly consume
the resources available, whether the implementation tech-
nology is an FPGA or a custom ASIC.

Without using some form of time-division multiplexing, the
lack of available I/O pins compared to the number which
would be required to communicate action potentials between
simulated neurons placed on different chips makes expand-
ing the simulation using multiple chips impossible. It is
also difficult to alter the biological neural network which is
being simulated, either the network is fixed by the ASIC
implementation, or it is necessary to create and synthesise
a new FPGA image. Upegui et al. [16] are able to simulate
50 neurons in a single FPGA, using run-time reconfigurable
blocks to allow the communication properties of the simu-

lated network to be altered without the time penalty of full
reconfiguration.

A method of addressing the lack of expandability by repre-
senting action potentials as messages on links between chips
was proposed by Boahen [3]. Neurons are simulated us-
ing analogue circuits and continue to communicate within
a chip using point-to-point wiring, so this method is essen-
tially providing a means of time-multiplexing the available
wiring between chips. The number of neurons which can be
simulated by a single chip remains limited as before, and the
limitations of programmability remain.

Maguire et al. [13] propose a method to reduce the wiring
complexity of a hardware neural network simulation, par-
ticularly when implemented using an FPGA, by storing
the current state of simulated neurons in RAM and time-
multiplexing both the wiring between simulated neurons and
the simulated neurons themselves. A processor is used to
control the scheduling of simulated neurons to resources,
but it does not perform any calculation related to the neu-
ral simulation algorithm, which is still handled by dedicated
hardware blocks. However, a combination of a more complex
neural simulation algorithm than ours and what appears to
be a lack of external memory bandwidth results in their sim-
ulation taking 90 minutes to simulate 1 second of activity in
a neural network with 4200 neurons and 1964200 synapses.

Emery, Yakovlev and Chester [5] propose to replace the ma-
jority of the wiring between simulated neurons with an on-
chip network, with point-to-point wiring remaining in small
cells of connected neuron simulation blocks. A single simu-
lation block is allocated per neuron, and it appears that the
parameters of each neuron are configured into its allocated
block before the simulation is run. The number of neurons
which can be simulated by a single chip is limited, since the
parameters of the simulated network must be stored in on-
chip memory rather than more abundant off-chip memory.
This limitation was identified by Hellmich et al. [7] and is
shared by many other proposed neural network simulation
systems.

Furber and Temple [6] are creating a neural network simula-
tion architecture that has many similarities with that which
we propose. Their SpiNNaker system is intended to consist
of a number of processing elements, each of which contains
20 simple ARM processors. The properties of the simulated
neurons are held in on-chip memory and the properties of
their synapses and connectivity are held in off-chip SDRAM.
Their simulation architecture uses significantly more on-chip
memory than is possible with our proposed architecture as
a custom ASIC implementation has been used. While this
allows every parameter of the design of a processing element
to be altered, significant design effort is required to create
even a prototype system, and the costs of manufacturing
these prototypes are orders of magnitude higher than creat-
ing prototype FPGA implementations. However, a custom
ASIC implementation could ultimately lead to savings in
power, resources and system cost if the ASICs that are pro-
duced are fabricated in sufficient volume, which will be the
case if this architecture is ultimately extended to be capable
of simulating one billion neurons in real-time.

14

6. PRELIMINARY RESULTS
The neural network simulation architecture described in Sec-
tion 4 has been implemented within a single Altera Stratix
III FPGA, hosted on a Terasic DE3 evaluation board. We
have successfully simulated 3200 neurons in real-time us-
ing the Izhikevich neural network simulation algorithm de-
scribed in Section 3. The average fan-out is between five
and ten, and the system clock frequency is 200MHz. As ex-
pected, the load on the off-chip memory is significant, but
analysis of the proportion of time that the off-chip memory
is idle suggests that it should be possible to host at least
four times as many neurons in a single FPGA.

The evaluation board used has proved to be unsuited to net-
working multiple boards in a grid or torus topology. While
it possesses four high-speed I/O connectors which are de-
signed to allow multiple boards to be connected together,
only three of them are usable if the system being imple-
mented also makes use of the DDR2 SDRAM connector. A
new DE4 evaluation board has recently been released, which
supports several additional communication protocols, and
most significantly the Stratix IV FPGA used has integrated
high-speed serial transceivers. We plan to be able to imple-
ment our neural network simulation architecture using this
platform, which should allow us to gain a better apprecia-
tion of the communication properties of the architecture in
greater detail and to simulate much larger neural networks
with larger numbers of synapses in real-time.

7. CONCLUSION
The main issues facing the creation of an architecture for
the efficient, real-time simulation of large neural networks
are communicating action potentials between simulated neu-
rons and storing and communicating the properties of the
simulated neurons and their connectivity.

The communication properties of biological neural networks,
particularly their locality of communication allow us to use a
neural network simulation architecture composed of multiple
processing nodes, connected using a grid or torus topology.
By representing action potentials as messages, and using
a packet-switched network to communicate them to their
destination, we are able to use an on- and off-chip network
to communicate action potentials while making efficient use
of energy and resources.

The amount of data required to represent the properties
and connectivity of a large neural network, particularly its
synapses, means that this data cannot be stored in on-chip
memory and must therefore be stored in off-chip memory.
The neural network simulation algorithm requires a signifi-
cant amount of bandwidth between off-chip memory and the
hardware used to evaluate the simulation algorithm. While
the bandwidth required is less than that theoretically avail-
able with modern FPGAs and memory technology, we must
make careful use of the available bandwidth if we are to
maintain a real-time simulation.

We believe that the architecture we have presented addresses
these communication issues, and will ultimately achieve the
goal of the real-time simulation of a biological neural net-

work with one billion neurons and one trillion synapses,
while making efficient use of power and resources.

8. REFERENCES
[1] www.bluespec.com.

[2] D. S. Bassett, D. L. Greenfield, A. Meyer-Lindenberg,
D. R. Weinberger, S. W. Moore, and E. T. Bullmore.
Efficient physical embedding of topologically complex
information processing networks in brains and
computer circuits. PLoS Comput Biol, 6(4):e1000748,
04 2010.

[3] K. Boahen. Point-to-point connectivity between
neuromorphic chips using address events. Circuits and
Systems II: Analog and Digital Signal Processing,
IEEE Transactions on, 47(5):416–434, May 2000.

[4] W. J. Dally and B. Towles. Route packets, not wires:
on-chip inteconnection networks. In DAC ’01:
Proceedings of the 38th conference on Design
automation, pages 684–689, New York, NY, USA,
2001. ACM.

[5] R. Emery, A. Yakovlev, and G. Chester.
Connection-centric network for spiking neural
networks. In NOCS ’09: Proceedings of the 2009 3rd
ACM/IEEE International Symposium on
Networks-on-Chip, pages 144–152, Washington, DC,
USA, 2009. IEEE Computer Society.

[6] S. Furber and S. Temple. Neural systems engineering.
Journal of The Royal Society Interface, 4(13):193–206,
2007.

[7] H. Hellmich, M. Geike, P. Griep, P. Mahr,
M. Rafanelli, and H. Klar. Emulation engine for
spiking neurons and adaptive synaptic weights. In
Neural Networks, 2005. IJCNN ’05. Proceedings. 2005
IEEE International Joint Conference on, volume 5,
pages 3261–3266 vol. 5, July-4 Aug. 2005.

[8] A. L. Hodgkin and A. F. Huxley. A quantitative
description of membrane current and its application to
conduction and excitation in nerve. The Journal of
Physiology, 117(4):500–544, 1952.

[9] G. Indiveri, E. Chicca, and R. Douglas. A vlsi array of
low-power spiking neurons and bistable synapses with
spike-timing dependent plasticity. Neural Networks,
IEEE Transactions on, 17(1):211–221, Jan. 2006.

[10] E. Izhikevich. Simple model of spiking neurons. Neural
Networks, IEEE Transactions on, 14(6):1569–1572,
Nov. 2003.

[11] E. Izhikevich. Which model to use for cortical spiking
neurons? Neural Networks, IEEE Transactions on,
15(5):1063–1070, Sept. 2004.

[12] X. Jin, S. Furber, and J. Woods. Efficient modelling of
spiking neural networks on a scalable chip
multiprocessor. In Neural Networks, 2008. IJCNN
2008. (IEEE World Congress on Computational
Intelligence). IEEE International Joint Conference on,
pages 2812 –2819, 1-8 2008.

[13] L. P. Maguire, T. M. McGinnity, B. Glackin,
A. Ghani, A. Belatreche, and J. Harkin. Challenges for
large-scale implementations of spiking neural networks
on fpgas. Neurocomput., 71(1-3):13–29, 2007.

[14] H. Markram. The blue brain project. Nat Rev
Neurosci, 7(2):153–160, February 2006.

15

[15] C. Mead. Neuromorphic electronic systems.
Proceedings of the IEEE, 78(10):1629 –1636, oct 1990.

[16] A. Upegui, C. A. PeÒa-Reyes, and E. Sanchez. An
FPGA platform for on-line topology exploration of
spiking neural networks. Microprocessors and
Microsystems, 29(5):211 – 223, 2005.

16

P systems simulations on massively parallel architectures ∗

José M. Cecilia
Computer Engineering and

Technology Department
University of Murcia
30100 Murcia, Spain

chema@ditec.um.es

José M. García
Computer Engineering and

Technology Department
University of Murcia
30100 Murcia, Spain

jmgarcia@ditec.um.es

Ginés D. Guerrero
Computer Engineering and

Technology Department
University of Murcia
30100 Murcia, Spain

gines.guerrero@ditec.um.es
Miguel A. Martínez–del–Amor

Computer Science and
Artificial Intelligence Dept.

University of Seville
41012 Seville, Spain
mdelamor@us.es

Mario J. Pérez–Jiménez
Computer Science and

Artificial Intelligence Dept.
University of Seville
41012 Seville, Spain
marper@us.es

Manuel Ujaldón
Computer Architecture

Department
University of Malaga
29071 Malaga, Spain
ujaldon@uma.es

ABSTRACT
Membrane Computing is an emergent research area study-
ing the behaviour of living cells to define bio-inspired com-
puting devices, also called P systems. Such devices pro-
vide polynomial time solutions to NP-complete problems by
trading time for space. The efficient simulation of P sys-
tems poses challenges in three different aspects: an intrinsic
massively parallelism of P systems, an exponential computa-
tional workspace, and a non-intensive floating point nature.
In this paper, we analyze the simulation of a family of recog-
nizer P systems with active membranes that solves the Sat-
isfiability (SAT) problem in linear time on three different ar-
chitectures: a shared memory system, a distributed memory
system, and a set of Graphics Processing Units (GPUs). For
an efficient handling of the exponential workspace created by
the P systems computation, we enable different data poli-
cies on those architectures to increase memory bandwidth
and exploit data locality through tiling. Parallelism inher-
ent to the target P system is also managed on each architec-
ture to demonstrate that GPUs offer a valid alternative for
high-performance computing at a considerably lower cost:
Considering the largest problem size we were able to run
on the three parallel platforms involving four processors,
execution times were 20049.70 ms. using OpenMP on the
shared memory multiprocessor, 4954.03 ms. using MPI on
the distributed memory multiprocessor and 565.56 ms. using
CUDA in our four GPUs, which results in speed factors of
35.44x and 8.75x, respectively.

Keywords
Multicore, Manycore, GPUs, P systems, SAT problem, High
Performance Computing

∗This work was supported by the Fundación Séneca (Agen-
cia Regional de Ciencia y Tecnoloǵıa, Región de Murcia)
under grant 00001/CS/2007, by the Spanish MEC and
MICINN under project TIN2009-13192, by the FEDER
funds of the European Community, under grants CSD2006-
00046 and TIN2009-14475-C04, and by the Junta of An-
dalucia of Spain under projects P06-TIC02109 and P08-
TIC04200. We would also like to acknowledge the support
of the Centro de Supercomputación de la Región de Murcia
where our experiments were conducted.

1. INTRODUCTION
Parallel computing architectures have brought dramatic

changes to mainstream computing. This trend is acceler-
ating as the end of the development of hardware following
Moore’s law looms on the horizon. The number of transis-
tors per die are no longer relying on a single chip design, but
being partitioned among a bunch of simpler cores. Multi-
core CPUs are holding a dozen of cores, and manycore GPUs
gather a myriad of stream processors. These components are
being combined to build heterogeneous parallel computers
offering a wide spectrum of high speed processing functions.
Major hurdles to exploit this raw power are the PCI express
bus to communicate the CPU and the GPU as they do not
share the memory space, and also their different parallel
programming approaches and paradigms. These problems
amplify when we move to heterogeneous clusters.

This paper explores this complex situation for a challeng-
ing application which requires (1) a dynamic handling of
memory space and (2) an exponential workspace growing
as our code increases the number of variables involved to
run the simulation. Our simulation characterizes Membrane
Computing, an emergent research area which studies the
behaviour of living cells to define bio-inspired computing
devices, also called P systems. These devices provide poly-
nomial time solutions to NP-complete problems by trading
time for space. This is inspired by the capability of cells to
produce an exponential number of new membranes in poly-
nomial time, through mitosis and autopeosis processes.

Currently, we lack of a feasible biological implementation,
either in vivo or in vitro, of P systems. The only way to
analyze and execute these devices is on silicon-based archi-
tectures which are limited by the physical laws. Although
some simulators and software applications have been derived
[8, 7], most of these simulators were developed for sequential
architectures using languages such as Java, CLIPS, Prolog
or C, where performance is hardly compromised.

Section 2 of this article introduces Membrane Computing
and describes the behaviour of this biologically inspired way
of computation, focusing on computational devices called
P systems to solve the Satisfiability (SAT) problem. This
behaviour is simulated on different architectures, namely, a
shared-memory architecture (HP Superdome), a distributed-

WPABA '10 17 ISBN 978-84-693-6141-2

memory machine (cluster of HP Blades), and finally a set
of Nvidia Tesla GPUs. Section 3 describes the parallelism
which can be extracted from a P system simulation with
active membranes, and once this is learnt, we demonstrate
in Section 4 how GPUs can accommodate two levels of par-
allelism in its computational model versus a single level on
shared and distributed memory systems.

The nature of P system computation creates an exponen-
tial workspace leading to polynomial time solutions for NP-
complete problems. Section 5 analyzes different data poli-
cies to increase the memory bandwidth, and also to take
advantage of the data locality on each architecture by pro-
viding a blocking/tiling algorithm. We also get a glimpse of
the memory limitations on each system to simulate larger
datasets and benchmarks. The GPU memory is very lim-
ited compared to the other alternatives, and the only way to
include more GPU memory is actually adding more GPUs
to the system. Finally, Section 6 highlights the main ideas
presented, and provides some directions for future work.

2. BACKGROUND AND RELATED WORK

2.1 Membrane computing and P systems
Gh. Păun introduced Membrane Computing in 1998 [12],

and since then, this bio-inspired computing paradigm has at-
tracted research activities within Natural Computing. The
model starts with the assumption that processes taking place
in the compartmental structure of a living cell can be inter-
preted as computations. Devices of this model are called
P systems, which consist of a cell-like membrane structure,
where compartments allocate multisets of objects, that is,
sets of objects with multiplicities associated to the elements.

P systems have several syntactic elements (see Figure 1):
First, a membrane structure consisting of a hierarchical ar-
rangement of membranes embedded in a skin membrane,
which delimits the internal region of the P system from the
environment. Second, delimiting regions or compartments
where multisets of objects (corresponding to chemical sub-
stances) and sets of evolution rules (corresponding to reac-
tion rules) are placed. Every membrane has associated an
unchangeable label, and depending on the P system model,
it may also contain a charge or polarization that can be
modified during the computation. Besides, P systems pos-
sess two valuable features: inherent parallelism and non-
determinism.

���������	
�	���
��

��������

������

�����

�����	�����

�

�

�

�

���

�

�

	

�

�

����
	

����

�

�

�

�

�

Figure 1: The structure of a P system.

A P system computation is a (finite or infinite) sequence of
instantaneous transitions between configurations. The com-

putation starts with an initial configuration of the system,
where the input data of a given problem is encoded. The
transition from one configuration to the next is performed
by applying rules to the objects inside the regions. This
process iterates until no more rules can be applied to the
existing objects and membranes.

Note that P systems exhibit two levels of parallelism: one
for each region (the rules are applied in a parallel way), and
another one for the system (all regions evolve concurrently).
The objects inside the membranes evolve according to given
rules in a synchronous, parallel, and non-deterministic way.

The two level parallelism and non-determinism can be
used to solve NP-complete problems in polynomial time, re-
ducing this from an exponential time, but at the expense of
using an exponential workspace of membranes and objects
which is created in polynomial (often linear) time.

Up to date, there have not been in vivo nor in vitro im-
plementations of P systems, and researchers have focused on
simulators developed in silicon whose initial versions were
targeted to sequential platforms [7, 8]. From this departure
point, the main challenge for the simulations of P systems
in general is to find the right platform to exploit massively
the parallelism inherent to the definition of P systems.

In this respect, several efforts have been done implement-
ing this massively parallelism on parallel architectures. For
instance, Alonso et al. [3] proposed a circuit implementation
for the class of transition P systems. Moreover, Nguyen et
al. [9] proposed an implementation of transition P systems
in FPGAs, providing several levels of parallelism, one at rule
level and other at region level, releasing a software frame-
work for Membrane Computing called Reconfig-P. A generic
simulator on GPUs for a family of recognizer P system with
active membranes was presented in [5], showing that the
double level of parallelism exposed by GPUs represents a
valid alternative to simulate P systems.

2.2 The Satisfiability (SAT) problem
Propositional Satisfiability problem (SAT) was the first

known NP-complete problem, as proven by Stephen Cook
in 1971 [6]. In computational logic, SAT is a decision prob-
lem aimed to determine, for a formula of the propositional
calculus in Conjunctive Normal Form (CNF), if there is an
assignment of truth values to its variables for which that for-
mula evaluates to true. This is of paramount importance in
many computer science areas, including theory, algorithmic,
artificial intelligence, hardware design, electronic design au-
tomation, and verification.

We assume a formula to be in CNF when it is a conjunc-
tion of clauses, where each clause is a disjunction of literals.
A literal is either a variable or its negation (the negation
of an expression can be reduced to negated variables by De
Morgan’s laws). For example, a1 is a positive literal and ¬a2

is a negative literal.
Considering a CNF formula φ with n variables (x1...xn)

and m clauses (C1...Cm), the time spent by all known deter-
ministic algorithms to solve the SAT problem is exponential
depending of the size of the input (max{m, n}) in the worst
case. With the help of membrane systems, we are able to
find the solution at linear time but at the expense of creating
an exponential workspace.

The P system simulation algorithm to solve the SAT prob-
lem is based on the P system computation described in [13],
which can be summarized as the following list of stages:

18

1. Generation. Membranes are structured within a rooted
tree with a single branch. The root node is the skin
membrane, and the second node is called internal mem-
brane. All possible truth assignments to the variables
are generated by using division rules, and they are en-
coded in the internal membranes by executing step by
step the set of P system rules already described in [13].
In this way, 2n internal membranes are created such
that each one encodes a truth assignment to the vari-
ables of the formula.

2. Synchronization. The objects encoding a true clause
(a partial solution to the CNF formula) are unified in
the membrane.

3. Check out. The goal here is to determine how many
(and which) clauses are true in every internal mem-
brane (that is, by the assignment that represents).

4. Output. Internal membranes encoding a solution send
an object to the skin. If the skin has such object from
some membrane, the object Y es is sent to the environ-
ment. Otherwise, the object No is sent.

Algorithm 1 summarizes the sequential code based on pre-
vious stages. First, Generation and Synchronization are the
stages creating an exponential workspace of membranes in
a synchronous way, and also unifying the objects that cod-
ify a partial solution. Both stages are executed in the same
function, which is referred to as Generation from now on.
Note that each membrane runs in parallel at each iteration
of Generation, but a global synchronization is required by
different iterations.

Once the workspace is created, the Check out and Output
stages are performed. First, they determine the clauses be-
ing true in every internal membrane, and then they check
whether there is a solution for the SAT problem. Hereafter,
we combine these two stages into a joint CheckOut function.

Algorithm 1 The sequential pseudocode of the P system
simulation algorithm for the SAT problem with n variables.

Require: n ≥ 0
{Start Generation and Synchronization stages}
repeat

Generation
until n
{Start Check out and Output stages}
CheckOut

The specific simulation of the family of P systems that
solves SAT for a single GPU is analyzed in [4], where prob-
lems to carry out the theoretical simulation of P systems
on GPUs are depicted, and some heuristics to accelerate its
computation are provided.

3. THE PARALLEL VERSION FOR THE P
SYSTEM SOLVING THE SAT PROBLEM

The P system for the SAT problem gathers all compu-
tational features of the recognizer P systems with active
membranes [11]. Among them, we highlight the theoretical
double level of parallelism and non-determinism that makes
P systems a computational tool to solve NP-complete prob-
lems in polynomial time.

� �

� � � � � � � �

� � � � � � � � 	 �
 �� �� �� �� �� ��

�

�

�

�

���

���

���

���

�

�

�

�

�

�

�

�

���

���

���

���

	

�

��

��

�

�

�

�

��

��

��

��

���������	
���
�����
	�����

� �� �

�����

�����

�����

�����

����		�	
���
�����
	�����

�����

�����

���������������	�

��
������ �

� �� �
�����

�����

����������	��
��
�
�		

����������

����������

Figure 2: Sequential and parallel membranes gener-
ation on four Compute Elements (CE). The Parallel
Preprocessing (PP) is required to set up the parallel
execution.

The first level of parallelism for the SAT P system is found
among membranes, that is, by executing each membrane in
parallel along the computation. The second level of paral-
lelism is found within each membrane. That way, the first
level is coarse-grained and can be characterized by an inter-
task parallelism and exploited by the number of processors
available in the parallel system, whereas the second level of
parallelism is fine-grained and intra-task to be exploited by
the number of cores within each processor, either on multi-
or many-core architectures.

The membrane parallelism is showed in Figure 2. It shows
the execution of the Generation function for the SAT P sys-
tem in a sequential as well as a parallel architecture with
four Compute Elements (CE). In a parallel architecture, a
set of membranes is initially created by the master process,
whose size is equal to the number of CEs available during
the execution. Then, a membrane is sent to each CE by the
master processor. This step is called Parallel Preprocessing
(PP), and it is developed just before the Generation starts
the computation on each CE. This CE is represented by a
processor (die) on each hardware platform, which can later
be eventually decomposed into multi- or many-cores when
exploiting intra-task parallelism.

Furthermore, Figure 2 shows that each membrane is al-
ways generated by the same membrane and also in the same
computational step on every architecture. For instance,
membrane two is always generated by membrane one in the
first computational step, membrane three is always gene-
rated by membrane one in the second step, and so on. Fi-
nally, each node sends the partial response back to the mas-
ter in order to produce the final result of the P system.

Figure 3 shows the second level of P system parallelism
(that internal to membranes). Once the initial data has
arrived to the CE after the Parallel Preprocessing step, it

19

Figure 3: Sequential and parallel execution when
creating the exponential workload.

starts the computation according to algorithm 1, and apply-
ing the P system rules for the SAT problem depicted in [13].
Then, resources on each CE can be exploited at its peak to
cooperate for speeding up the computation of the Genera-
tion and CheckOut functions. This resources are essentially
hardware cores on shared memory, distributed memory and
GPU platforms, but only GPUs are manycore which can
handle this level of parallelism at large scale using hundreds
of streaming processors (see Table 1).

4. DATA POLICIES DESCRIPTION
Our P system simulator for the SAT problem organizes

data depending on the features of the underlying architec-
ture. We now describe those data policies.

4.1 The shared memory implementation
The simulator was implemented on the shared memory

system using OpenMP [2]. Figure 4 shows the first data
layout used by our simulator. The shared memory space is
equally distributed among the n processes considered, and
the master process performs the Parallel Preprocessing step
by creating as many membranes as number of processors
are involved in the computation. Membranes are placed at
the beginning of the memory space assigned to each process
(see gray squares in Figure 4). Now, the Generation step
is carried out by each individual process, writing the infor-
mation on its own memory fragment. Once the membranes
workspace has been created by the Generation stage, the
CheckOut stage follows, where membranes are read again
by processes to eventually produce the system response.

This data policy does not take advantage of data locality
when the Generation and CheckOut stages are performed,
thus producing many caches misses (in particular, read misses)
that hit the simulator performance. Locality was improved
through a block-based data layout as shown in Figure 5.

��

������

������	
��

�� ���������� ��

��

��
������	

�� ��

���	
��
���
�����
����
	������

���	
����������
����
	������

������

������

���	
��
���
�����
����
	������

���	
��
���
�����
����
	�������

���	
����������
����
	������

���	
����������
����
	������

����������

Figure 4: Initial data placement for our shared
memory implementation.

��

����������

�����	
���

������	 ������

�������

�� ��

������	 ������
������� ������	�������

����������

������	 ������
������	�������

�

������	 ������
������	�������

��������� ��������� �����	��	 �����
��

Figure 5: The shared memory implementation for n
processes using our block-based data layout.

Again, the master process starts with the Parallel Prepro-
cessing step, which generates as many membranes as pro-
cesses (represented by black squares in Figure 5). But now
each process performs a local preprocessing step (called Block
Preprocessing, (BP)) on its own memory space before start-
ing the Generation stage itself. Block Preprocessing pursues
a tiling or blocking execution between different stages of
the simulation. Each process creates as many membranes
as number of blocks, placing them at the beginning of each
block position (represented by gray squares in Figure 5).
Then, the Generation stage only creates blocksize mem-
branes before the CheckOut stage starts. Once a block has
been checked by the CheckOut stage, processes start again
the Generation on the following block it has assigned to.

The block-based data policy increases the time required
by preprocessing, including a new BP stage, but a shorter
data block can be placed in higher levels of the memory
hierarchy, which benefits from data locality. However, there
is a trade-off between preprocessing computation (PP and
BP) and the data locality benefits for the Generation and
CheckOut stages, being affected by the block size chosen.

4.2 The distributed memory implementation
The P system simulator for the SAT problem on the dis-

tributed memory system was programmed using MPI [1].

20

������

���	���

��

��

��

��	�
�

�������	
��
���
�

������
���
���
�

������

��	�
�

������
���
���
�

������

��
����

������
���
���
�

������

��	�
�

������
���
���
�

������

Figure 6: P system simulation on a distributed
memory architecture.

Again, we compare here a preliminary non-blocking version
with an enhanced version based on a blocking data policy.

In this case, each process allocates memory on its own and
private memory space. The master process also performs the
Parallel Preprocessing step, creating as many membranes
as number of processors are involved in the computation.
Then, membranes are sent to processors by using the MPI
Scatter instruction.

Once the initial data arrives to each node, the P system
computation was developed as in the shared memory case.
For the non-blocking data policy, the Generation is fully per-
formed before the CheckOut starts its computations. For the
block-based data policy, the Block Preprocessing is required
for a blocking or tiling execution. Figure 6 shows the data
layout for the block-based data policy. Finally, a reduction
is applied using the MPI Reduce instruction to end up with
the system answer.

4.3 Implementation on GPUs
The simulator sets a CUDA thread block for each mem-

brane and a CUDA thread per object (or set of objects) in
the multiset.

This time, the first attempt for the SAT P system simu-
lation on GPUs, the Generation stage, is encoded as a CUDA
kernel, and it starts right after the Parallel Preprocessing
step. Once membranes have been generated, the CheckOut
stage starts its execution. Each thread block loads a mem-
brane from global memory, and then each thread checks
the rules associated with this stage. Finally, each block
returns whether its associated membrane makes true the
CNF formula or not. For these stages, all threads within
a CUDA thread block cooperate with coalesced access to
device memory (threads of the same warp access the same
memory segment either for reading or writing).

Blocking can also be exploited on GPUs, taking advantage
of the on-chip shared memory by using tiles with the aim
of increasing the bandwidth to device memory (see Figure
7). The simulation has to perform the Block Preprocessing
step, which is implemented through a CUDA kernel where a
set of membranes are partially created, placing them apart
from each other at a block size distance.

An additional kernel is created this time at the end of the

���������	�	
�������	
�	�

�	���

�	���

���������
	

��
��
��
����
���
�

��
����

��������	
���

�����

�����

��������	
���
�

������

��������	
�����

��
���� ��
���� ��
���� ��
����

���������
	

��
��
��
����
���
�

��������	�	
����������	��������	
�	�

��������	
���
� ��������	
����� ��������	
����� ��������	
�����

��
��������������
���
�
���

��
��������������
���
�
���

��
��������������
���
�
���

��
��������������
���
�
���

�
����
�
��������
��������
�

�
����
�
��������
��������
�

�
����
�
��������
��������
�

�
����
�
��������
��������
�

�
���������

��������	
���
� ��������	
����� ��������	
����� ��������	
�����

������
 ��
���
����������
�
���

������
 ��
���
����������
�
���

������
 ��
���
����������
�
���

������
 ��
���
����������
�
���

������� ������ �������

Figure 7: P system simulation on a single GPU.

simulation. This kernel performs the Generation locally to
each block, followed by the CheckOut stage. Each thread on
a thread block cooperates for an efficient load from global
memory to shared memory of the initial membrane gene-
rated by the Block Preprocessing step (represented by black
squares in Figure 7). Then, the Generation stage interacts
with shared memory, saving expensive loads/writes from/to
global memory which are around 400 times slower.

Finally, the CheckOut stage is performed over the data
stored in shared memory after a block-level synchronization.
This checks whether a clause makes true the CNF formula,
and writes its result into device memory.

Figure 8 shows the data policy used by the simulation of
the P system for the SAT problem on a GPU-based plat-
form. This simulator arranges data according to the ”best
practices” existing at this moment for CUDA enabled de-
vices with CUDA Compute Capabilities (C.C.C.) 1.3 [10].
Nevertheless, those guidelines are mainly focused on arith-
metic intensive applications on a single GPU. It remains to
be seen whether they are valid on architectures like GPU-
based clusters with a much higher degree of parallelism.

Within a GPU-based cluster, GPUs cannot interact with
each other, and a CPU process has to be created to monitor
each GPU independently. Note that this does not force us
to use parallelism at CPU core level, as we have exactly four
CPUs in our system which can individually host each of the
required processes. This way, our three implementations
lack of using the multithread capabilities of CPU cores.

Figure 8 shows how the master thread creates four CPU
threads (CPU context) to invoke the execution on each GPU

21

�������

��������	
���

�������������
	

�

�

�����������������������

�������

��������	
����

	

�

�

�����������������������

�����

�������

��������	
���

�������������
	

�

�

�����������������������

�������

��������	
����

	

�

�

�����������������������

�����

�������

��������	
���

�������������
	

�

�

�����������������������

�������

��������	
����

	

�

�

�����������������������

�����

�������

��������	
���

�������������
	

�

�

�����������������������

�������

��������	
����

	

�

�

�����������������������

�����

������

�������

������
	

������
�

������
�

������
�

Figure 8: Data policy on a set of four GPUs.

and manage its resources (i.e allocate device memory, move
data to/from the GPU, and so on). Resources created on
each CPU thread are not accessible by any other thread, and
there is no explicit initialization function for the runtime
API [10], which makes hard to measure time in a reliable
manner, particularly on multi-GPU environments.

For the GPU case, the master process performs the Para-
llel Preprocessing step as usual, generating as many mem-
branes as GPUs are involved in the simulation, and perform-
ing the assignment.

At a starting point, the simulation barely exploits GPU re-
sources because the computation begins with a single CUDA
thread block (which represents the membrane generated by
the Parallel Preprocessing step). However, the number of
CUDA thread blocks grows exponentially in the Generation
stage along with the number of membranes, and GPU re-
sources are fully utilized at early stages of the simulation.
Another alternative consists of creating a larger set of initial
membranes in the Parallel Preprocessing step to fulfill that
GPU resources are occupied right from the beginning, but
we have tested that this initial low usage of GPU resources
has a negligible impact, even on tiny benchmarks.

5. PERFORMANCE EVALUATION
This section evaluates our P systems implementations in

three different platforms. Hardware features are summa-
rized in Tables 1 and 2.

The shared memory platform is a HP Integrity Superdome
SX2000 endowed with 64 CPUs, Intel Itanium 2 dual-core
Montvale (16 Kbytes L1, 256 Kbytes L2, 18 Mbytes L3).
Total DRAM memory available is 1.5 Tbytes and intercon-
nection network is a 4x DDR Infiniband.

The distributed memory system is a HP BladeSystem
which contains up to 102 nodes and each node is a dual-
socket, each containing a quad-core Intel Xeon E5450 (Ne-
halem with a 12 Mbytes L2 cache). DRAM memory capac-
ity for the whole system is 1072 Gbytes. Interconnection
network is also a 4x DDR Infiniband.

Finally, our GPU-based platform include a four-socket,

Table 1: CUDA and hardware features for the Tesla
C1060 GPU used within our GPU-based platform.

Feature Limitation
Multiprocessors (SM) 30
Streaming processors / SM 8
Total number of streaming processors 240
32-bit registers / SM 16384
Shared memory / SM 16 KB
Threads / SM 1024
Threads / Block 512
Threads / Warp 32
Device (video) memory available 4 GB

� � � � �� �� �� ���
�

�

�

�

�

�

�

	

�

����
��
���� ����
��
���� �	��
��
���� �
��
��
����

����
��
���� ����
��
���� ����
��
����

��������������������������
�

�
�

�
�

�
�

��

�
 �

�

Figure 9: Speed up factor achieved by the blocking
algorithm when varying the number of variables.

quad-core Intel Xeon E5530 (Nehalem with a 8 Mbytes L2
cache), which acts as a host machine for our four Nvidia
Tesla C1060 GPUs whose details are shown in Table 1.

Data policies and simulation performance are evaluated
on each architecture under a set of benchmarks generated by
the WinSAT program [14]. WinSAT can generate random
SAT problems in DIMACS CNF format file by configuring
several parameters: the number of variables (n), the number
of clauses (m) and the number of literals per clause (k).

The number of membranes in our P system depends on
the number of CNF variables, n (Membranes = 2n). We
vary this parameter from n = 13 variables (213 membranes)
to n = 25 variables (225 membranes), whereas the number of
literals (l = m×k) is kept constant (l = 256 for benchmarks
with n < 22 and l = 200 for benchmarks with n ≥ 22). Do-
ing so, we reduce memory requirements so that more bench-
marks can be simulated on the GPU-based system. Memory
requirements for each benchmark can be calculated accord-
ing to Equation 1.

Size = 2n(membranes) × l(objects) × 4(uint) bytes (1)

5.1 The shared memory platform
A performance comparison between the blocking and non-

blocking algorithm for 64 membranes per block is shown in
Figure 9. The blocking technique increases performance ei-
ther with the problem size (i.e. the number of variables in
the CNF formula for the SAT problem) or the number of
computational processes (OpenMP processes created). The
former is needed to hide the Preprocessing time (PP and
BP), and the latter involves the memory coherence proto-
col: The network traffic in shared memory systems goes up

22

Table 2: Summary of hardware features for the architectures used during our experimental survey.
Shared memory Distributed memory GPU-based

Hardware Hewlett-Packard Integrity Hewlett-Packard 4 Intel Xeon E5530 CPU (plus
platform Superdome SX2000 Blade System 4 Tesla GPUs described in Table 1)
Number of nodes 1 102 1
CPU sockets per node 64 2 4
CPU cores per socket 2 4 4
CPU cores and speed 128 @ 1.6 GHz 816 @ 3 GHz 16 @ 2.4 GHz
Main memory (DRAM) 1536 GB 1072 GB 16 GB. (+ 16 GB. video memory)
Programming model OpenMP (+ Linux 64 bits) MPI (+ Linux 64 bits) CUDA (+ Linux 64 bits)
Compiler icc Intel 11.1 HP MPI 02.03.01 nvcc Nvidia 2.3

� �� ������
�

����

����

����

����

�����

�����

�����

�����

��	
	�� �
�
������ ��
��	���

�����	���
	���	�
�����
��

!

�
�
��
�
�
	�
��

	�
�
	�
�

�
�
"

Figure 10: Breakdown for the total execution time
using 8 processes for a SAT problem composed of
n = 23 variables and l = 200 literals.

with the number of cores, but the blocking technique takes
advantage of the local data stored on each node to reduce
the communications burden versus the non-blocking version.

We now present some results about the simulation perfor-
mance of the SAT P system, depending on the block size
for the block-based data layout in our shared memory sys-
tem. Figure 10 shows the breakdown for the total execution
time in the three main functions performed by the OpenMP
simulation, depending on the block size used by the block-
ing technique. We have checked many different block sizes
to find the best configuration, but for the sake of simplicity
Figure 10 only shows three of them for the benchmark with
n = 23 variables: the largest block size configuration, the
shortest one, and finally the one scoring peak performance.

The largest block size (219membranes/block, up to 420
Mbytes according to Eq. 1) is the most time-consuming
configuration. The Preprocessing (PP and BP preprocess-
ing) step is the least time-consuming for this configuration
because only a few initial membranes are required in ad-
vance, but the Generation and CheckOut stages are heavier
than in the other two configurations. CheckOut starts read-
ing the first membrane right after the 219membranes of a
block are generated by each process. Since the L3 cache size
for the processor in our shared memory architecture system
is 18 Mbytes, many read and write cache misses occur in
those stages, affecting the overall simulation performance.

Similarly, the smallest block size (23membranes/block)
shows the highest Preprocessing time. Although the Gener-
ation and CheckOut stages behave much better on cache
misses, the simulation finds its best configuration for 26

membranes (50 Kbytes) per block. This is the turning point
between Preprocessing time and Cache misses (write and
read misses) for this architecture.

� � � � �� �� �� ���
�

��

���

����

�����

������

�������

���	
��

��� ���	
��

��� ���	
��

��� ���	
��

���

���	
��

��� ���	
��

��� ���	
��

���

���
���������������

�
�
�
�
�
��
�
�
��
��

�
��
�
��

�
�
�
�
��
 �
�
!
��

�

��

"

Figure 11: OpenMP code performance varying the
number of variables for the block-based version.

Finally, Figure 11 shows the execution time (in a log scale)
for the SAT P system simulation with the best configuration
under the blocking technique. We executed several bench-
marks varying the number of variables of the SAT problem,
and also varied the number of OpenMP processes involved
in the computation for each benchmark in order to study
the scalability of the system.

ttotal = tprepro + tcpu + toverhead (2)

The total execution time is given by the equation 2. The
first parameter (tprepro) is the preprocessing time spent by
the master process to create the initial set of membranes to
be distributed among remaining processors; this is Parallel
Preprocessing plus the preprocessing time needed by each
process to prepare the blocking execution (that is, Block
Preprocessing). It depends on two values: the number of
processes and the block size. The second parameter (tcpu)
concerns the processing time taken by each node, and de-
pends on the benchmark size. Finally, the last parameter
(toverhead) is the extra overhead added to the OpenMP exe-
cution time (i.e. synchronizations, loop scheduling, commu-
nications among processors, resource sharing, etc...). This
parameter increases widely with the number of OpenMP
processes.

Figure 11 shows that the scalability of the system grows
with the problem size, as processing time (see equation 2)
predominates over remaining parameters as long as the prob-
lem size increases. This scalability gets reduced on smaller
benchmarks.

Note that this version only exploits the intra-task paral-
lelism (that is, among membranes). Remaining stages for
the simulation are sequentially performed on each node.

5.2 The distributed memory platform
In this case, the maximum speed up obtained by the best

configuration for the blocking technique algorithm reaches
up to 2x versus the non-blocking alternative, with this peak

23

� ��� ������
�

����

����

����

����

����

����

		
�
�	
��������� �����
���

�����
����
���
���������

!
"
�
�
�
��
�
�

�
��

�

�
�

�

�
�
�
�
#

Figure 12: Breakdown of the total execution time
using 8 MPI cores with n = 23 variables and l = 200
literals.

� � � � �� �� �� ���
�

��

���

����

�����

������

���	
��

��� ���	
��

��� ���	
��

��� ���	
��

���

���	
��

��� ���	
��

��� ���	
��

���

���
�������������������

�
�
�

�
�

 �
�

!
�
��

�
��
!
��

�
�

�
�
"�
#�
�

$
��

�

��
%

Figure 13: MPI code performance varying the num-
ber of variables.

reached for the case of the n = 25 variables benchmark.
Memory banks are independent on this platform, so the
blocking algorithm takes advantage of data locality to im-
prove memory bandwidth.

Regarding the optimal data block size, Figure 12 shows
the breakdown of the total execution time for the three main
functions performed by the MPI simulation for the bench-
mark with n = 23 variables. Again, Figure 12 shows only the
largest, shortest, and best performance block size configura-
tions. The optimal case here corresponds to 27 membranes
per block (100 Kbytes per block).

Figure 13 shows the execution time (in a log scale) for the
MPI code, taking the best configuration blocking technique
and varying the number of variables of the SAT problem
and the number of MPI processes. The total execution time
can also be given by the equation 2. Minor differences are
seen based on the architectural features of each system, with
the overhead being influenced by communications among
processors. Data sent to each processor by the master is a
single membrane, and the result returned by each node is
just a boolean, saying whether or not a solution is found.

Figure 13 reveals that the system scalability improves
again with the problem size, but it scales much better than
in the OpenMP case. Results on a single core are missing for
the largest benchmark (that of n = 25 variables), because
the memory available on a single node is not enough to run
the simulation (the benchmark allocates up to 26 Gbytes
and the maximum memory per node is 16 Gbytes).

Note that this version does not exploit the inter-task par-
allelism either: Each membrane is sent to a node and simu-
lations are executed sequentially on that node.

Figure 14: Breakdown of the total execution time in
a single GPU with n = 22 variables.

5.3 The set of four GPUs
In this case, the tiling technique obtains up to 1.75x speed

up factor versus the non-tiling counterpart.
Figure 14 shows the breakdown of the total execution time

for a single GPU executing the benchmark with n = 22 vari-
ables and using a tiling version. It shows that the 67% of
total execution time is spent by the runtime API initializa-
tion on average, and only 32% corresponds to the actual
execution time. Data transfers are not that important here,
and lose the leadership shown on previous platforms.

The runtime API initialization penalty is not usually con-
sidered when timing GPU applications because it is not sta-
ble between different executions nor related to the actual
GPU computation. But in our case it represents two thirds
of the total execution time, so we decided to include it within
GPU times even though it goes against its performance over
the other two architectures.

First of all, we evaluate the impact of the data block size.
Figure 15 shows the breakdown of the total execution time
for the two main kernels performed by the GPU simulation.
The block size is now limited by the on-chip shared memory
space (16 Kbytes for Tesla C1060). Simulations are tested
for two, four and eight membranes per block, reaching the
best performance for the last case.

The number of global memory accesses and the number
of iterations in the Block Preprocessing kernel intrinsically
depends on block size. In particular, eight membranes per
block require half of the memory accesses and iterations as
compared to the four membranes per block configuration,
which, similarly, cut down to a half those required by the
two membranes per block case. Figure 15 reflects this fact.

Likewise, memory accesses in the Generation and Check-
Out stages are reduced in a similar way as long as the block
size increases. However, the GPU resource occupancy wors-
ens for the eight membranes per block case, because the
shared memory usage per block prevents from allocating
more than one block per SM. As a result, the overall im-
provement is just 14% over the four membranes per block
configuration.

Figure 16 shows the performance for the tiling version of
the GPU simulator with eight membranes per block, and
varying the problem size. The number of GPUs is also in-
creased to study the scalability for the system.

In a multi GPU environment, Figure 16 shows a linear
speed up along with the number of GPUs. This is ex-
pected as the computational workload is evenly distributed
on GPUs. Furthermore, there is more room on each GPU
memory space, so higher workloads may be executed. Figure
16 shows that a single GPU cannot execute the benchmark
with n=23 variables, whose memory requirements are 6400

24

� � �
�

��

���

���

���

���

���

���

��	
	�� �
�
������	
	
��
��	���

�����	���
	���	�
�����
��

!

�
�
��
�
�
	�
��

	�
�
	�
�

�
�
"

Figure 15: Breakdown for the execution time on a
single GPU with n = 23 variables and l = 200 literals.

� � �
���

�

��

���

����

����	
�	�
�� ����	
�	�
�� ����	
�	�
�� ����	
�	�
��

����	
�	�
�� ����	
�	�
�� ����	
�	�
�� ����	
�	�
��

�����
��������

�
��

�
�
��
�

�
��
��

�
��
�
��

�
�

�
�
 �
!

�

"
��

�
	

�
#

Figure 16: CUDA performance when varying the
number of variables (on y axis) and GPUs (x axis).

Mbytes. Similarly, two GPUs cannot execute the bench-
mark with n=24, with its size reaching 12800 Mbytes. At
this point, we recall that a P systems simulation creates an
exponential workspace to obtain polynomial time solutions
for NP-complete problems. So, the benchmark composed of
n=25 variables consumes 25.6 Gbytes, which again becomes
unfeasible on four GPUs.

Times in Figure 16 do not account for overheads like ini-
tial and final data transfers between CPU and GPU, GPU
memory allocation, and CUDA runtime initialization, which
may be significant in practice. Parallel Preprocessing time
spent to arrange the execution on multiple GPUs is also ig-
nored, though this time is negligible as the simulation creates
just four membranes on a four GPUs configuration.

GPUs improve significantly the device memory bandwidth
through shared memory usage, which is explicitly used by
the CUDA programmer. This way, one can control the num-
ber of accesses and the way to access on memory bounded
applications like ours. Even though the small size of the
shared memory decreases GPU occupancy, the benefit of re-
ducing the number of accesses to device memory is much
higher and this strategy is widely rewarded.

5.4 Overall comparison
Figure 17 summarizes the performance for all our imple-

mentations. For the smallest benchmark, GPU performance
gets severely affected by initialization overheads, but this
is quickly amortized as we increase the problem size. The
situation reverses for larger benchmarks, reaching its peak
for n = 23 variables, where the problem size only fits into

two or four GPUs, and that is the reason why the time on
a single GPU is missing. With the last run for n = 25 vari-
ables requiring 25.6 Gbytes, we were unable to execute it on
GPUs even considering together the video memory of our
four GPUs.

Considering the largest problem size and amount of paral-
lelism we were able to expose on the three parallel platforms
for a fair comparison (n = 23 variables and four proces-
sors), execution times were 20049.70 msec. using OpenMP
on the shared memory multiprocessor, 4954.03 msecs. using
MPI on the distributed memory multiprocessor and 565.56
msecs. using CUDA in our set of four GPUs. Consequently,
the speed-up we attain with our set of GPUs reaches 8.75x
versus the distributed memory system and 35.44x versus the
shared memory platform for a much cheaper high-performance
alternative.

6. CONCLUSIONS
In this article, we have described the simulation of a fam-

ily of recognizer P systems with active membranes, solving
the satisfiability (SAT) problem, on three different parallel
architectures base on shared memory, distributed memory
and a set of GPUs. We have also used three different pro-
gramming models: OpenMP, MPI and CUDA, respectively.

Our data placement analysis reveals that blocking increases
the bandwidth in all targeted systems by taking advantage
of data locality, but performance varies depending of the
memory architecture and the way to manage it. We also
dedicate some efforts to reduce the cost of preprocessing
steps required for applying this technique on each platform.

The blocking technique improves the parallel efficiency of
the shared memory architecture, but the OpenMP simulator
reaches the lowest performance as the pressure on shared
resources increases with the number of processors. On the
positive side, this was the only platform where we were able
to execute all benchmarks due to higher memory availability.

The distributed memory system exhibits good scalability
with the number of processors, which can be partially ex-
plained by the low number of communications required by
our simulations.

GPUs constitute the best platform to simulate P systems
for SAT in terms of execution time. The two levels of paral-
lelism that P systems exhibit, one at region level and another
one at system level, were exploited by our GPU implementa-
tion to reach speed-up factors around 10x versus distributed
memory and around 40x versus shared memory when four
processors are used on a given platform.

For the future, the newest generation of many-core GPU
architectures, Nvidia Fermi, enhances the GPU with memory
resources to develop general purpose applications and more
sophisticated models of P systems. Moreover, the combi-
nation of cloud computing and heterogeneous systems can
be an alternative for increasing the memory size without
sacrificing performance at all.

Alternative models of P systems which could be used
to computationally replicate biological systems within the
framework of population and systems biology (i.e., proba-
bilistic/stochastic models) are well positioned to be success-
fully simulated on multi- and many-core systems due to its
arithmetic intensity and large number of iterations required
to adjust the model. A high-performance implementation of
those simulation models looks promising on GPUs and we
have provided some guidelines to succeed by using CUDA.

25

�

��

���

����

�����

������

�������

� � � � �
�

�
�

�
�

�
�
�

� � � � �
�

�
�

�
�

�
�
�

� � � � �
�

�
�

�
�

�
�
�

� � � � �
�

�
�

�
�

�
�
�

� � � � �
�

�
�

�
�

�
�
�

� � � � �
�

�
�

�
�

�
�
�

� � � � �
�

�
�

�
�

�
�
�

���	
��

��� ���	
��

��� ���	
��

��� ���	
��

��� ���	
��

��� ���	
��

��� ���	
��

���

���������	
���
����	����������������

�
�
�
��
��
�
�
��
��

�
��
�
��

��
��
��
�

�
�
��
��

�
�

��������� �������� ��������

Figure 17: Execution time for the three different programming models and architectures: CUDA on GPUs,
OpenMP on a shared memory system and MPI on a distributed memory platform.

7. REFERENCES

[1] Message Passing Interface (MPI).
http://www.mcs.anl.gov/mpi.

[2] The OpenMP Specification. http://www.openmp.org.

[3] S. Alonso, L. Fernández, F. Arroyo and J. Gil. A
circuit implementing massive parallelism in transition
P systems. International Journal Information
Technologies and Knowledge, 2(1):35–42, 2008.

[4] J. M. Cecilia, J. M. Garćıa, G. D. Guerrero, M. A. M.
del Amor, I. Pérez-Hurtado and M. J. Pérez-Jiménez.
Simulating a P system based efficient solution to SAT
by using GPUs. Journal of Logic and Algebraic
Programming, 79(6):317–325, 2010.

[5] J. M. Cecilia, J. M. Garćıa, G. D. Guerrero, M. A. M.
del Amor, I. Pérez-Hurtado and M. J. Pérez-Jiménez.
Simulation of P systems with active membranes on
CUDA. Briefings in Bioinformatics, 11(3):313–322,
2010.

[6] S. A. Cook. The complexity of theorem-proving
procedures. In STOC ’71: Proceedings of the third
annual ACM symposium on Theory of computing,
pages 151–158, New York, NY, USA, 1971. ACM.

[7] D. Dı́az, C. Graciani, M. A. Gutiérrez-Naranjo,

I. Pérez-Hurtado and M. J. Pérez-Jiménez. Software
for p systems. In Gh.Paun, G.Rozenberg, A.Salomaa,
editors, The Oxford Handbook of Membrane
Computing, pages 437–454. Oxford Univ. Press, 2009.

[8] M. Garćıa-Quismondo, R. Gutiérrez-Escudero,
I. Pérez-Hurtado, M. J. Pérez-Jiménez and
A. Riscos-Núñez. An overview of p-lingua 2.0. Lecture
Notes in Computer Science, 5957:264–288, 2010.

[9] V. Nguyen, D. Kearney and G. Gioiosa. An extensible,
maintainable and elegant approach to hardware source
code generation in reconfig-p. J. Logic and Algebraic
Programming, 79(6):383–396, 2010.

[10] NVIDIA. CUDA Programming Guide 2.0. 2008.

[11] G. Paun. Membrane computing. An introduction.
Springer-Verlag, pages 9–419, 2002.

[12] G. Paun, T. Centre and C. Science. Computing with
membranes. Journal of Computer and System
Sciences, 61:108–143, 1998.

[13] M. J. Pérez-Jiménez, Á. Romero-Jiménez and
F. Sancho-Caparrini. Complexity classes in models of
cellular computing with membranes. J. Natural
Computing, 2(3):265–285, 2003.

[14] M. Qasem. WinSAT website:
(http://users.ecs.soton.ac.uk/mqq06r/winsat).

26

GPU-Accelerated Genetic Algorithms

Rajvi Shah
International Institute of
Information Technology

Hyderabad, India
rajvi.shah@research.iiit.ac.in

P.J.Narayanan
International Institute of
Information Technology

Hyderabad, India
pjn@iiit.ac.in

Kishore Kothapalli
International Institute of
Information Technology

Hyderabad, India
kkishore@iiit.ac.in

ABSTRACT
Genetic algorithms are effective in solving many optimiza-
tion tasks. However, the long execution time associated with
it prevents its use in many domains. In this paper, we pro-
pose a new approach for parallel implementation of genetic
algorithm on graphics processing units (GPUs) using CUDA
programming model. We exploit the parallelism within a
chromosome in addition to the parallelism across multiple
chromosomes. The use of one thread per chromosome by
previous efforts does not utilize the GPU resources effec-
tively. Our approach uses multiple threads per chromosome,
thereby exploiting the massively multithreaded GPU more
effectively. This results in good utilization of GPU resources
even at small population sizes while maintaining impressive
speed up for large population sizes. Our approach is mod-
eled after the GAlib library and is adaptable to a variety
of problems. We obtain a speedup of over 1500 over the
CPU on problems involving a million chromosomes. Prob-
lems of such magnitude are not ordinarily attempted due to
the prohibitive computation times.

Categories and Subject Descriptors
D.1.3 [PROGRAMMING TECHNIQUES]: Concurrent
Programming—Parallel Programming ; I.2.8 [ARTIFICIAL
INTELLIGENCE]: Problem Solving, Control Methods,
and Search—Heuristic Methods

General Terms
Algorithms,Performance

Keywords
GAs,GPU,Genetic Algorithm,CUDA,Parallel GAs

1. INTRODUCTION
Genetic Algorithms (GAs) are a set of evolutionary algo-
rithms, powerful and effective in solving search and opti-
mization tasks. This class of algorithms is inspired by the

process of biological evolution. Similar to the process of evo-
lution, genetic algorithms employ natural selection, crossover,
mutation and survival of fittest to find the fittest solution in
a search space represented by a population of chromosomes,
where each chromosome represents one possible solution to
the optimization problem (Holland [4]).

A typical genetic algorithm starts with selecting random
points in search space, representing them as chromosomes
and building an initial population. This initial population
is evaluated using a fitness function to suggest how fit a
chromosome is to represent the solution. A fitness-based
or uniform selection is carried out to select parent chromo-
somes to undergo crossover and produce offsprings, which
usually with a very low mutation probability gets mutated.
Hence, main components of a genetic algorithm are chromo-
some representation, selection, crossover and mutation. A
representation that encodes the solution of the problem in
the best possible way is used. Crossover and Mutation op-
erators are often limited by the representation being used.
Many methods exist for the process of selection as well, a
method is chosen based on the convergence and diversity
needs.

The user needs to tune various parameters and experiment
with genetic operations and selection methods to achieve de-
sired results using a genetic algorithm. In such a scenario, a
library-like utility provides users great flexibility and ease of
experimentation, speeding up the process of actual problem
solving. Many public libraries exist for genetic algorithms
providing a unified and optimized approach to achieve de-
sired results. GALib (Wall [16]) is one such widely accepted
library which enables the users to represent and solve their
problems using genetic algorithms in a simple and effective
way with enough flexibility. The long execution times asso-
ciated with Genetic Algorithms constraints its application
in many domains, despite its popularity on many domains.

In this paper, we present a generic framework for Genetic
Algorithms accelerated by the modern Graphics Processing
Units (GPUs), inspired by GALib. Such a framework not
only provides a platform for fast execution but encourages
experiments in new domains and with novel approaches in-
volving huge population sizes which was limited due to im-
practical execution times. The key distinction of the ap-
proach is the effort to go beyond chromosome level par-
allelism whenever possible and utilize the massively mul-
tithreaded model of GPUs to its fullest.

WPABA '10 27 ISBN 978-84-693-6141-2

Our approach is implemented using Nvidia’s CUDA pro-
gramming model (NVIDIA [7]), but with enough isolation
from the user program so that users need not be proficient
in CUDA programming. We implement the original genetic
algorithms and achieve a speed up of about 1500 on large
problems using the massively multithreaded model of the
GPU as exposed by CUDA.

2. RELATED WORK
Genetic Algorithms have been well explored and used in
many domains for a long time. Attempts have been made
in recent times to accelerate their performance using GPUs.
Yu et al. [18] implemented a fine-grained parallel genetic
algorithm (Tomassini and Calcolo [14]) on the GPU using
Cg shader mechanism. A hybrid genetic algorithm (HGA)
was proposed and implemented on GPU using the graphics
pipeline and shading languages by Wong and Wong [17].

These above approaches were implemented and tested on
Nvidida’s GeForce 6800GT GPUs using the graphics pipeline.
As the GPUs became more powerful and popular, they have
become fully programmable parallel processing units. With
the availability of high-level programming languages such
as CUDA (NVIDIA [7]) and OpenCL (Khronos OpenCL
Working Group [6]), researchers now see GPUs as a high
performance multi-core processors. This has established a
trend for General-purpose computation on GPUs (GPGPU)
(GPGPU [3]).

In a recent work, Posṕıchal et al. [8] presented a mapping
of the parallel-island model of GA (Cantu-Paz [1]) to the
CUDA architecture. This approach was implemented and
tested on Nvidia’s high-end CUDA compatible GPUs, namely,
the 8800 GTX and GTX 285. The mapping of population
islands to blocks benefits tremendously by fast access to
shared memory resources within a block accelerating the
performance many times. The island model is further ex-
plored to solve 0-1 knapsack problem in Posṕıchal et al. [9].
The islands model is especially well suited to the block struc-
ture of CUDA with limited shared memory. This approach
doesn’t extend well to the general GA framework, which is
the focus of this work.

3. GPU AND CUDA ARCHITECTURE
We present an overview of the CUDA programming and
hardware models in this section. Please see (NVIDIA [7]) for
more details about CUDA programming. Figure 1 depicts
the CUDA programming model, mapping a software CUDA
block to a hardware CUDA multiprocessor. A number of
blocks can be assigned to a multiprocessor and they are
time-shared internally by the CUDA programming environ-
ment. Each multiprocessors consists of a series of processors
which run the threads present inside a block in a time-shared
fashion based on the warp size of the CUDA device. Each
multiprocessor further contains a small shared memory, a
set of 32-bit registers, texture, and constant memory caches
common to all processors inside it. Processors in the multi-
processor executes the same instruction on different data at
any time. This makes CUDA an SIMD model. Communi-
cation between multiprocessors is through the device global
memory which is accessible to all processors within a mul-
tiprocessor. Synchronization between threads of a block are

possible. Synchronization across blocks is possible only at
kernel boundaries.

The CUDA API provides a set of library functions which
can be coded as an extension of the C language. A compiler
generates executable code for the CUDA device. The CPU
sees a CUDA device as a multi-core co-processor. The code
executes as threads running in parallel in batches of warp
size, time-shared on the CUDA processors. Each thread can
use a number of private registers for its computation. A
collection of threads (called a block) runs on a multiproces-
sor at a given time. Threads of each block have access to
a small amount of common shared memory. Synchroniza-
tion barriers are also available for all threads of a block.
A group of blocks can be assigned to a single multiproces-
sor but their execution is time-shared. The available shared
memory and registers are split equally amongst all blocks
that timeshare a multiprocessor. An execution on a device
generates a number of blocks, collectively known as a grid
Figure 1.

Each thread executes a single instruction set called the ker-
nel. Threads and blocks are given a unique ID that can be
accessed within the thread during its execution. These can
be used by a thread to perform the kernel task on its part of
the data resulting in an SIMD execution. Algorithms may
use multiple kernels, which share data through the global
memory and synchronize their execution either at the end
of each kernel or forcefully using barriers.

4. GPU ACCELERATED GA
Genetic algorithm execution is a parallel process. That is,
there is no dependency across the chromosomes of a popu-
lation for the process of fitness evaluation and genetic op-
erations. Hence, the entire population can be operated in
parallel within a generation. To exploit the parallelism at
a greater level, we form groups of threads to handle a sin-
gle chromosome, thus mapping the problem to a massively
multithreaded model for which GPUs are best suited. Cur-
rently, we have implemented the generic genetic algorithm
with uniform and roulette wheel selection strategies, one
point crossover and flip mutation (Goldberg [2]). Figure 2
shows the overall flow of the genetic algorithm framework
onto a GPU.

4.1 Data Organization
In past, efforts were made to effectively utilize the paral-
lelism of chromosomes by employing one thread per chro-
mosome to perform fitness evaluation as well as genetic op-
erations (Posṕıchal et al. [8], Robilliard et al. [10]). The key
difference of our approach is that we use several threads to
perform these operations on a single chromosome, resulting
in a better utilization of GPU resources. This is realized in
practice by organizing the data in GPU memory in such a
way that genes of each chromosomes can be accessed effi-
ciently in a coherent manner by multiple threads handling
it. This section describes organization of thread and data,
used by various CUDA kernels.

Population is laid out in main memory of GPU, as a two
dimensional N × L matrix such that columns refer to chro-
mosomes and rows corresponds to genes within chromosomes
as shown in Figure 3, where N is population size and L is

28

…

…

SP SP SP SP

SP SP SP SP

Shared Mem

Shared Mem

The device global memory

Grid with multiple blocks resulting from a Kernel call

The CUDA Device, with a number of Multiprocessors

CUDA Block

Multiprocessor

Runs On

Threads

The CUDA Hardware Model

1

n

The CUDA Programming Model

Variables

Figure 1: The CUDA hardware model (top) and programming model (bottom), showing the block to multiprocessor mapping.

Figure 2: Program Execution and Memory Transfers

chromosome length. For a thread per chromosome model,
threads in a block are arranged as a one dimensional array
as shown in Figure 4 with one thread per chromosome. For a
fully parallel approach, threads in a block are also arranged
as a two dimensional matrix as shown in Figure 5. Ker-
nel parameter blockDim.x is controlled by the number of
threads per block (TPB), which is a CUDA block param-
eter. This layout leads to a one-to-one mapping between
thread indices and genes. So, all genes of a chromosome can
be accessed simultaneously.

Figure 3: Population Matrix in memory

Figure 4: Thread Layout A

A detailed description of the execution flow depicted in Fig-
ure 2 and the mapping of the data layout shown in Figure 3
to a massively multithreaded model in each of the kernels is
given in the subsequent subsections.

4.2 Fitness Evaluation Kernel
The process of fitness evaluation determines how fit each
chromosome is to be the solution. Unlike other genetic op-

29

Figure 5: Thread Layout B

erators, fitness evaluation is a problem specific process and
has to be provided by the user. In our framework, we pro-
vide a partially parallel and a fully parallel methods for the
process of fitness evaluation.

The partially parallel method uses thread layout A as shown
in Figure 4 with one thread per chromosome. In this method,
user can access the chromosome as a 1D array and write
an expression for fitness evaluation by accessing this array.
User’s C code fragment is used in fitness evaluation kernel
by each of the threads to evaluate fitness of each individ-
ual. This is possible as CUDA is compatible to C. The
calculated fitness scores are written back to the GPU global
memory. As only chromosome level parallelism is exploited,
this method may prove less efficient. But, it doesn’t require
a user to be familiar with CUDA architecture or program-
ming. Hence, it makes the utility useful to a larger commu-
nity at a small loss in performance.

The fully parallel method is provided for CUDA proficient
users wherein the user can supply an evaluation function
including a fitness evaluation kernel which may utilize the
GPU resources in a more effective manner. This provides
the user a way to achieve maximum performance.

Consider an example of 0-1 Knapsack problem. We are given
a set of items with associated weights and costs. The aim is
to pick items such that the total cost is maximum and total
weight does not exceed knapsack capacity. A binary string
is a convenient representation for chromosomes in this prob-
lem, where 1 indicates presence of an item and otherwise.
Length of the chromosome is set to total number of items.
In such a problem the fitness evaluation will involve finding
cost sum and weight sum for all the chromosomes.

In partially parallel method, every thread will read one chro-
mosome, its weight and cost, calculate total sum and to-
tal cost and write the score, providing parallelism across
the chromosomes. Whereas in a fully parallel approach, we
copy a block of cromosomes to shared memory. According
to thread layout B (Figure 5), threads in each column read
genes of corresponding chromosome, multiply it with cost
and weight arrays and perform a log-sum as shown in Fig-
ure 6.

Fully parallel approach with careful utilization of shared re-
sources can make the evaluation process much faster, espe-

Figure 6: Parallel Sum

cially for problems involving intensive fitness calculation.

4.3 Statistics Kernel
After the fitness scores are calculated, population statistics
need to be updated. Population statistics are used for the
process of selection and to decide termination. The max-
imum, minimum and average and total fitness scores are
calculated using standard parallel reduce algorithms (Jaja
[5]). Best and worst chromosomes are recorded to ensure
elitism, if selected by user. Also the selection probability for
each of the chromosome is calculated.

Fitness scores may need to be sorted depending upon the se-
lection method to be used. Sorting is not required if stochas-
tic selection method is used. For probabilistic selection, like
roulette wheel or rank selection, scores need to be sorted.
A fast GPU based radix-sort, provided by CUDPP (CUDA
Data Parallel Primitives) library is used for the same (Satish
et al. [12]). Some method-specific statistics are also calcu-
lated, which is described later.

4.4 Selection Kernel
The execution of a Genetic Algorithm begins with the pro-
cess of selection. In the process of selection, parent chro-
mosomes are selected to go through the process of crossover
to produce offspring. Selection Kernel will vary according
to the selection method being used. Here, Uniform and
Roulette Wheel selection kernels are described in detail. A
uniform selection kernel is described in Pseudo-code 1.

Pseudo-code 1 Uniform Kernel
N ← popSize
numThreads ← N

2

{For all threads in parallel}

i ← threadIdx
parent1(i) ← random(0, N − 1)
parent2(i) ← random(0, N − 1)
parent1(i + 1) ← parent1(i)
parent2(i + 1) ← parent2(i)

Roulette wheel selection is more expensive than uniform
selection. To simulate the roulette wheel, the population

30

is sorted based on the fitness score values (Satish et al.
[12]). These score values are normalized to calculate se-
lection probabilities. A sum-scan is performed on the nor-
malized array (Sengupta et al. [13]). This new array is
stored in global memory and used as a roulette wheel array
(rouletteArray). These calculations are done in statistcs
update stage, prior to execution of selection kernel. This
selection kernel is described in Pseudo-code 2.

Pseudo-code 2 Roulette Wheel Kernel
GLOBAL : rouletteArray
N ← popSize
numThreads ← N

2

{For all threads in parallel}

i ← threadIdx
p1 ← random(0− 1)
p2 ← random(0− 1)

parent1(i) ← rotateWheel(p1, N)
parent2(i) ← rotateWheel(p1, N)
parent1(i + 1) ← parent1(i)
parent2(i + 1) ← parent2(i)

The rotateWheel function used in selection, performs a bi-
nary search on prefix-summed rouletteArray for the nearest
smaller real number and returns parent index. This subrou-
tine is described in Pseudo-code 3.

Pseudo-code 3 rotateWheel(n,N)

GLOBAL : rouletteArray
flag = 0
start = 0, end = N, middle = d end

2
e

while !flag do
left ← rouletteArray[middle]
right ← rouletteArray[middle + 1]
if n >= left then

if n < right then
index ← middle
flag = 1

else
start = middle
middle = start + d end−start

2
e

end if
else

end = middle
middle = d end−start

2
e

end if
end while
return(index)

Both, Uniform and Roulette Wheel Selection use thread lay-
out A as shown in Figure 4.

4.5 Crossover Kernel
A pair of chromosomes selected in selection process under-
goes the process of crossover to produce offsprings. The pro-
cess of crossover is controlled by the crossover probability.
Our implementation performs one-point crossover, but the
same approach can be adapted to other crossover methods
as well.

4.5.1 Crossover Preprocess
In our implementation, crossover points are calculated and
stored prior to invoking actual crossover kernel. As the ap-
proach used for crossover uses multiple threads per chro-
mosome, all the threads performing crossover between two
chromosomes should know a common crossover point value.
This prohibits generation of crossover points in crossover
kernel itself due to a restrictive memory model and synchro-
nization issues across the blocks in CUDA (NVIDIA [7]).

A kernel for selecting crossover points for one-point crossover
is described by Pseudo-code 4. This kernel uses thread
model A as shown in Figure 4.

Pseudo-code 4 Crossover Points Kernel
N ← popSize
L ← chromoLength
numThreads ← N

2

{For all threads in parallel}

i ← threadIdx
r1 ← random(0, 1)
if r1 ≥ probCross then

crossPoint(i) ← random(0, L− 1)
crossPoint(i + 1) ← crossPoint(i + 1)

else
crossPoint(i) ← 0
crossPoint(i + 1) ← 0

end if

In practice, crossover points are also selected along with par-
ents in selection kernel as it uses the same thread layout.

4.5.2 One-point Cross-over
Instead of making one thread read two chromosomes, per-
form crossover and write the offspring chromosomes back,
we make use of multiple threads to read a single chromo-
some. This approach results in a coalesced read and write
of data speeding up the execution greatly.

As shown in the Figure 3, a chromosome occupies a column
in the population matrix. Hence, the column index becomes
the chromosome index. For the process of crossover we make
use of total NL threads where N is the population size and
L is the chromosome length. These threads are also laid
out as a 2D matrix with N columns and L rows across the
bloacks as shown in Figure 5. Now, instead of using one
thread per crossover operation we use 2L threads, utilizing
the massively multithreaded GPU model. Pseudo-code 5
describes a one-point crossover kernel using NL number of
threads.

4.6 Mutation Kernel
In the process of genetic evolution, some chromosomes of
the population mutate with a small mutation probability.
Mutation is very crucial to bring genetic algorithm out of a
local maxima or minima. The process of mutation is con-
trolled by the mutation probability. We consider mutation
probability as a probability for a gene to get mutated. For
mutation kernel we again make use of matrix layout of Fig-
ure 3 for population and thread layout of Figure 5. Each

31

Pseudo-code 5 Crossover Kernel
GLOBAL : Parent1, Parent2, crossPoint
N ← popSize
L ← chromoLength
numThreads ← N × L

{For all threads in parallel}

Cidx ← threadIdx.x
Ridx ← threadIdx.y

p1 ← Parent1(Cidx)
p2 ← Parent2(Cidx)
xPoint ← crossPoint(Cidx)

if Ridx ≤ xPoint then
newPopulation(Cidx, Ridx) = oldPopulation(p1, Ridx)

else
newPopulation(Cidx, Ridx) = oldPopulation(p2, Ridx)

end if

thread now corresponds to a gene and decides whether or
not to mutate the gene.

4.7 Random Numbers
Random numbers are extensively used throughout a genetic
algorithm. CUDA does not provide any support for on the
fly generation of a random number by a thread because of
many synchronization issues associated. To solve this issue,
an estimate of required random numbers is made. For ex-
ample, a GA set up for a uniform selection with one-point
crossover and flip mutation requires nearly T = 2N+N+NL
random numbers in one iteration, where N is the population
size and L is length of the chromosome. Based on this esti-
mate and memory limits imposed by hardware, a large pool
of random numbers are generated and stored on GPU global
memory before initiating the genetic algorithm. To speed up
the process of generation and avoid transfer, we make use
of rand routine provided by CUDPP, which uses MD5 al-
gorithm for pseudo random number generation (Tzeng and
Wei [15]). If high quality random numbers are needed, this
is replaced by a CPU based random number generation fol-
lowed by a copy to global memory.

5. PROGRAMMING INTERFACE
GALib (Wall [16]) is built around a few base classes, the
main two being a Genome class and a Genetic Algorithm
class. A user is allowed to tune a Genetic Algorithm accord-
ing to the problem by setting various parameters through
these classes.

Our framework is built around three main structures: GA
Context, Genome Context and GAStatistics Context.

Out of these three, GA Context and Genome Context are
mainly filled by user and contains various parameters for
execution of genetic algorithm like population size, chromo-
some size, crossover and mutation probabilities, selection
method, termination method etc. GAStatistics is mainly
filled by the program along with execution of genetic algo-
rithm. It holds fitness scores and other population related

statistics. Support functions are provided to fill these struc-
tures, print parameters and destroy the structures.

Other than these three structures, user in his program needs
to declare a void pointer to the population, and define and
declare a user data structure which user might want to use
for fitness evaluation. User also needs to supply fitness eval-
uation related code fragment as explained previously. A
typical example user program 1 is listed below.

int main()
{

void *population;
UDATA udata;

GAContext ga;
GNMContext genome;
GAStats stats;

GASetParameters(&ga,&genome,&stats);
GAPrintParameters(&ga,&genome,&stats);

gaEvolvePopulation(&population,&ga,&genome
,&stats,&udata);

PrintSolution(population,&genome,&stats);

GAdestroyContexts(&ga,&genome,&stats);
return 0;

}

device float FitnessFunc(BIN1D *g,
GNMContext genome,UDATA *udata)

{
// Code to find fitness of a genome
return score;

}

Program 1: An Example User Program

6. RESULTS AND DISCUSSION
We use a quarter of Nvidia’s Tesla S1070 GPU to test our
implementation. Tesla is a massively parallel platform with
30 multiprocessors each having 8 cores. We compare the
performance of our GPU implementation with the serial im-
plementation provided by GAlib (Wall [16]), running on an
Intel Core2 Duo E7500(2.93 GHz) CPU. The direct com-
parison of running time (or speedup) of the CPU and the
GPU is not entirely meaningful to evaluate their merits and
demerits. The timing statistics is provided to provide the
readers a sense of what they can expect with respect to a
standard package.

We chose a standard 0-1 knapsack problem (Sahni [11]) to
measure the performance speedup. We performed various
experiments by changing chromosome length, population
size, number of generations and selection methods. In all
the experiments, the GPU accelerated approach showed sig-
nificant speed up against serial implementation with com-
parable results. The quality of results is not degraded, as
the basic algorithm was not modified but only paralleled.

A side-by-side performance comparison is given in Table 1
and Table 2, showing the GPU and CPU execution times for
various population sizes for uniform selection and roulette
wheel selection methods respectively. Chromosome length
and number of generations were fixed at 50 and 100 respec-

32

tively. All the timings are averaged over 5 trials. The num-
bers clearly indicate that problems of huge magnitude can
be solved in seconds with a GPU accelerated approach.

N GPU Std.Dev CPU Std.Dev Speed Up
100 0.025 0.000006 0.127 0.006148 5.04
1000 0.031 0.000472 1.364 0.002490 43.61
10000 0.153 0.000485 19.799 0.270023 129.40
100000 1.561 0.001172 342.814 4.714645 219.06
1000000 3.662 0.001435 4803.381 214.557712 1311.36

Table 1: Timing Comparison for Uniform Selection, Time
for 100 generations is given in seconds

N GPU Std.Dev CPU Std.Dev Speed Up
100 0.046 0.000051 0.141 0.003834 3.01
1000 0.053 0.000041 1.629 0.017473 30.38
10000 0.209 0.000859 21.609 0.624903 103.19
100000 1.724 0.001149 492.927 9.326317 286.04
1000000 4.727 0.000327 7233.716 176.666921 1530.14

Table 2: Timing Comparison for Roulette Wheel Selection,
Time for 100 generations is given in seconds

Table 3 shows the average execution time of the GPU-based
approach for various chromosome lengths and population
sizes for 100 generations, with a plot of the same in Figure 7.
It is apparant from Figure 7 that the run-time growth is
sublinear as the product NL increases.

Population Size (N)
L 100 1000 10000 100000 1000000
16 0.022 0.026 0.073 0.625 6.472
32 0.024 0.030 0.111 1.164 2.671
64 0.026 0.035 0.202 2.105 4.124
128 0.031 0.052 0.443 4.523 11.592
256 0.041 0.109 1.137 11.092 39.792
512 0.062 0.265 2.443 10.492 93.301

Table 3: Run-time in seconds for varying parameters for 100
generations

2 2.5 3 3.5 4 4.5 5 5.5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Number of Generations(log10)

T
im

e
in

 S
ec

on
ds

(lo
g1

0)

L:256
L:128
L:64
L:32

Figure 7: Run-time growth with N and L

Run-time growth of our approach with increasing number of
iterations is linear as can be seen from Figure 8.

We also tried a numerical optimization problem using our

50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Generations

T
im

e
in

 S
ec

on
ds

L:128
L:64
L:32

Figure 8: Run-time growth with number of generations

implementation for its effectiveness. Our system found the
minima of Rosenbrock’s function effectively and fast.

Direct performance comparison of our approach with other
GPU based approaches is not meaningful. We achieve much
higher speed up than that achieved by (Wong and Wong [17],
Yu et al. [18]), but this comparison is not justified as they
use a relatively old and less powerful hardware. Posṕıchal
et al. [8] use comparable hardware and demonstrates great
speedup but using a parallel-island model of GA which can
benifit greatly by shared resources.

7. CONCLUSION
In this paper, we demonstrate an approach to accelerate
a simple genetic algorithm using the GPUs by exploiting
gene level parallelism. We provide a mapping of various GA
kernels to massively multithreaded model of GPUs using the
CUDA programming model. Our GA framework is built
around three basic structures to make the implementation
extensible and flexible. Current implementation discusses
a simple genetic algorithm with 1D chromosome and two
different selection methods. The proposed framework can
be extended to a GPU accelerated genetic algorithms library
by incorporating more and more features. With speedup
achieved over a factor of 1000 and a programmable library-
like interface, GPU accelerated GA can find applications in
many new domains.

8. ACKNOWLEDGEMENT
We thank Nvidia for providing equipment support.

References
[1] E. Cantu-Paz. Efficient and Accurate Parallel Ge-

netic Algorithms. Kluwer Academic Publishers, Nor-
well, MA, USA, 2000.

[2] D. Goldberg. Genetic algorithms in search, optimiza-
tion and machine learning. Addison-Wesley, 1989.

[3] GPGPU. General purpose computation on Graphics
Processing Units. URL http://www.gpgpu.org.

33

http://www.gpgpu.org�

[4] J. Holland. Adaptation in natural and artificial systems
: an introductory analysis with applications to biology,
control, and artificial intelligence. MIT Press, Cam-
bridge Mass., 1st MIT press ed. edition, 1992.

[5] J. Jaja. An Introduction to Parallel Algorithms.
Addison-Wesley Professional, 1992.

[6] Khronos OpenCL Working Group. The OpenCL Spec-
ification, version 1.0.29, 8 December 2008.

[7] NVIDIA. NVIDIA CUDA Programming Guide Version
3.0. NVIDIA Corporation, 2010.

[8] P. Posṕıchal, J. JaroŽ, and J. Schwarz. Parallel Genetic
Algorithm on the CUDA Architecture. In Applications
of Evolutionary Computation, LNCS 6024, pages 442–
451. Springer Verlag, 2010.

[9] P. Posṕıchal, J. Schwarz, and J. JaroŽ. Parallel Genetic
Algorithm Solving 0/1 Knapsack Problem Running on
the GPU. In 16th International Conference on Soft
Computing MENDEL 2010, pages 64–70. Brno Univer-
sity of Technology, 2010.

[10] D. Robilliard, V. Marion-Poty, and C. Fonlupt. Popu-
lation parallel gp on the g80 gpu. In EuroGP’08: Pro-
ceedings of the 11th European conference on Genetic
programming, pages 98–109, Berlin, Heidelberg, 2008.
Springer-Verlag.

[11] S. Sahni. Approximate Algorithms for the 0/1 Knap-
sack Problem. J. ACM, 22(1):115–124, 1975.

[12] N. Satish, M. Harris, and M. Garland. Designing effi-
cient sorting algorithms for manycore GPUs. In IPDPS
’09: Proceedings of the 2009 IEEE International Sym-
posium on Parallel&Distributed Processing, pages 1–10,
Washington, DC, USA, 2009. IEEE Computer Society.

[13] S. Sengupta, M. Harris, and M. Garland. M.: Efficient
parallel scan algorithms for GPUs. NVIDIA. Nvidia
technical report, NVIDIA Corporation, 2008.

[14] M. Tomassini and C. S. D. Calcolo. A Survey of Genetic
Algorithms, 1995.

[15] S. Tzeng and L.-Y. Wei. Parallel white noise generation
on a GPU via cryptographic hash. In I3D ’08: Proceed-
ings of the 2008 symposium on Interactive 3D graphics
and games, pages 79–87, New York, NY, USA, 2008.
ACM.

[16] M. Wall. GAlib, A C++ Library of Genetic Algorithm
Components. http://lancet.mit.edu/ga/, 2008.

[17] M. Wong and T. Wong. Parallel Hybrid Genetic Al-
gorithms on Consumer-Level Graphics Hardware. In
Evolutionary Computation, 2006. CEC 2006. IEEE
Congress on, pages 2973–2980, 2006.

[18] Q. Yu, C. Chen, and Z. Pan. Parallel genetic algorithms
on programmable graphics hardware. In Advances in
Natural Computation, First International Conference,
ICNC 2005, Proceedings, Part III, volume 3612, pages
1051–1059. Springer, August 27-29 2005.

34

Hybridizing Memetic Algorithms and Particle Filters for
Visual Tracking on GPU

Raúl Cabido
Universidad Rey Juan Carlos

c/ Tulipán s/n, 28933
Móstoles (Madrid), Spain
raul.cabido@urjc.es

Antonio S. Montemayor
Universidad Rey Juan Carlos

c/ Tulipán s/n, 28933
Móstoles (Madrid), Spain
antonio.sanz@urjc.es

Juan J. Pantrigo
Universidad Rey Juan Carlos

c/ Tulipán s/n, 28933
Móstoles (Madrid), Spain

juanjose.pantrigo@urjc.es

ABSTRACT
Visual tracking is oriented at estimating the state of one
or multiple moving objects in a video sequence. This is
one of the first tasks in processing video systems which
try to describe human behavior in different contexts, such
as video-surveillance, sport technique analysis, etc. This
work presents an object tracking system which properly hy-
bridizes particle filters and memetic algorithms on a GPU
architecture to produce a more reliable and efficient track-
ing algorithm. The system has been tested on synthetic and
real image sequences with the aim of describing their per-
formance under different conditions. Experimental results
demonstrate that the MAPF algorithm accurately tracks ob-
jects in the scene with a precision and accuracy better than
standard PF. In addiction, GPU implementation allow us to
keep computational load and precision in proper balance.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; I.3.m [Computer
Graphics]: Miscellaneous; I.4.8 [Image Processing and
Computer Vision]: Scene Analysis—Tracking

General Terms
Algorithms

Keywords
Memetic Algorithms, Particle Filtering, Hybrid Methods,
Visual Tracking, Graphics Processing Units

1. INTRODUCTION
Video-based visual tracking is a complex task, consisting of
the estimation of the position of a set of targets (people,
vehicles, etc.) moving in the scene [14]. Most of the po-
tential applications of this task (such as video surveillance,
human-computer interaction, etc.) require from robust and
efficient tracking algorithms. This is a relevant problem in
Computer Vision and it has been focused using different

methodologies. Several approaches have been proposed to
tackle the problem of visual tracking [27] [28] [19]. Some of
the most popular approaches are based on algorithms de-
rived from the particle filter (PF) framework [23] proposed
in [8].

This work presents an algorithm called memetic algorithm
particle filter (MAPF) which hybridizes particle filters [8]
and memetic algorithms [18][17]. This algorithm has been
carefully chosen to be embedded in a parallel platform, such
as a graphics processing unit, because of the parallel-friendly
nature of the particle filter method [16][3].

This paper also presents experimental evidences of the sys-
tem performance in relation to quality and computational
load. The main contributions of this work can be summa-
rized as follows:

1. Development of a reliable tracking system that is able
to track targets in 2D in synthetic and real sequences.

2. Adaptation of a hybrid particle filter algorithm called
memetic algorithm particle filter (MAPF) to a parallel
and scalable platform.

The rest of the paper is organized as follows. Section 2 fo-
cuses on the description of the main algorithmic techniques
and topics related to this work. Section 3 resumes the pro-
posed approach and Section 4 illustrates the details of the
MAPF application in visual tracking. Section 5 is devoted
to describe the adaptation and implementation details of
the MAPF to a GPU architecture. Section 6 shows and dis-
cusses the experimental results obtained. Finally, Section 7
summarizes the conclusions.

2. BACKGROUND AND RELATED WORK
In this section we provide information related to the main
topics of this work: particle filters and different hybrid meth-
ods, memetic algorithms and GPU computation.

2.1 Sequential Estimation and Particle filters
Many interesting problems in science and engineering re-
quire estimation of the state of a system that changes over
time using a sequence of noisy measurements made on the
system [2]. Tracking problems, which consist of the esti-
mation of the position of one or multiple targets moving in

WPABA '10 35 ISBN 978-84-693-6141-2

a scenario along time [14], are important examples of se-
quential estimation problems. The state-space modelling of
these systems focuses on the state vector, which contains all
relevant information required to describe the system under
investigation. In tracking problems, for example, this infor-
mation describes kinematic characteristics of the target as
position, orientation, velocity, etc.

A particle filter (PF) is based on a large population of dis-
crete representations (called particles) of the probability den-
sity function (pdf) which describes the evolution of a given
system [4]. To achieve this goal, PF combines adaptation
and prediction strategies. Isard and Blake adapted this al-
gorithm to be applied to visual tracking in the middle 90’s
[11] and later, they proposed the CONDENSATION (CON-
ditional DENsity propagaTION) algorithm [12]. This pro-
posal makes possible the contour tracking in video sequences
and, nowadays, constitutes the basis of most tracking algo-
rithms based on probabilistic principles.

Particle Filters (PF) are algorithms in which theoretical
distributions in the state-space are approximated by simu-
lated random measures (also called particles) [4]. The state-
space model consists of two processes: (i) an observation
process p(Z1:t|Xt) where Xt denotes the system state vec-
tor and Zt is the observation vector at time t, and (ii) a
transition process p(Xt|Xt−1). Assuming that observations
{Z0, Z1, . . . , Zt} are sequentially measured in time, the goal
is the estimation of the new system state at each time step.
In the framework of Sequential Bayesian Modeling, the pos-
terior pdf is estimated in two stages:

(a) Evaluation: the posterior pdf p(Xt|Z1:t) is computed
using the observation vector Z1:t:

p(Xt|Z1:t) =
p(Zt|Xt)p(Xt|Z1:t−1)

p(Zt|Z1:t−1)
(1)

(b) Prediction: the posterior pdf p(Xt|Z1:t−1) is propagated
at time step t using the Chapman-Kolmogorov equation:

p(Xt|Z1:t−1) =

∫
p(Xt|Xt−1)p(Xt−1|Z1:t−1)dXt−1 (2)

The aim of the PF algorithm is to recursively estimate the
posterior pdf p(Xt|Z1:t). This pdf is represented by a set
of weighted particles {(x0

t , π
0
t), . . . , (xN

t , πN
t)}, where the

weights πi
t ∝ p(Z1:t|Xt = xi

t) are normalized. The state
of the system St can be estimated by, for example, the fol-
lowing expression:

St =

N∑
n=1

πn
t xn

t (3)

Figure 1 represents a pseudocode for the PF algorithm. From
an algorithmic point of view, the PF algorithm directs the
temporal evolution of a particle set. Particles in PF evolve
according to the system model and they are selected or elim-
inated with a probability which depends on their weight,
determined by the pdf [4]. In visual tracking problems this
pdf represents the probability of a target being in a given
position in the image. As a consequence, the utility of the

Figure 1: Flow diagram for the particle filter algo-
rithm.

particle filter algorithm for visual tracking problems lies in
the description of the temporal evolution of the system state.

2.2 Hybrid particle filters
Unfortunately, the approach proposed by Isard and Blake is
not effective in high dimensional estimation problems, such
as multi-dimensional visual tracking (MVT) problems. In
this category falls articulated and multiple object tracking.
In the CONDENSATION approach, the number of required
particles grows with the size of the state-space, as demon-
strated in [15]. In fact, conventional PF algorithm does not
scale well in problems with high dimensional state-spaces
[25].

To address this difficulty, several optimized PF algorithms
have been proposed. Most of them use different strategies
to improve the performance of conventional PF algorithm.
Partitioned Sampling (PS) [15] is a statistical approach to
tackle hierarchical search problems. PS consists of divid-
ing the state space into two or more partitions, and sequen-
tially applying the dynamic model for each partition followed
by a weighted resampling stage. Deutscher [6][7] developed
an algorithm referred to as Annealed Particle Filter (APF)
for tracking people. This is one of the first PF-based al-
gorithms successfully applied to a multi-dimensional visual
tracking problem. Furthermore, APF was the first algo-
rithm which combined ideas from PF and metaheuristics
(optimization strategies). Nowadays, there are several algo-
rithms based on the hybridization of PF and Genetic Algo-
rithms [5][7]. These algorithms include combination stages
into the PF scheme, but no improvement stage is performed.
Other methods have also been proposed, based on the use
of Kalman filters [22], a combination of probabilistic and

36

Figure 2: Flow diagram for the memetic algorithm.

evolutionary methods [24], etc. For example, a related ap-
proach combining a standard particle filter with a popula-
tional metaheuristic is presented in [26]. This paper intro-
duces a coarse-to-fine algorithm for tracking licence plates in
a sequence of video frames. The condensation algorithm is
used for a coarse localization of the interest objects. At each
iteration of this algorithm, additional iterations of Differen-
tial Evolution (DE) algorithm are embedded to optimize the
license plate boundaries detection.

2.3 Memetic algorithms
The term memetic algorithm (MA) refers to family of meta-
heuristics that have as central theme the hybridization of dif-
ferent algorithmic approaches for a given problem [18][17].
This method has been successfully applied to a variety of
optimization problems [10][18]. MA allows us to exploit all
available knowledge about the problem under study [18].
That is what makes MA different from other evolutionary
methods. This philosophy is illustrated with the term ’meme’
introduced in [?], which denotes an analogy with the ’gene’
in the context of cultural evolution. The ideas (’memes’) are
propagated from brain to brain via the cultural processes in
a way similar to how the gene pool (’genes’) is propagated
from body to body via reproduction processes. This char-
acterization of a ’meme’ suggest that in cultural evolution
processes, information is not simply transmitted unaltered
between individuals, but it is processed and enhanced by the
communicating parts. In algorithmic terms, this enhance-
ment is accomplished in MAs by incorporating heuristics,

approximation algorithms, local search techniques, special-
ized recombination operators, truncated exact methods, etc.
[18].

Therefore, the key idea of the MAs is the combination of
different heuristics (tipically, individual improvement proce-
dures with cooperation and competition processes) in a pop-
ulational context. That is, MA maintains a population of
solutions during the whole optimization process. These so-
lutions are related to each other in a competition and coop-
eration context, which is organized in different generations.
Each generation is a new update of the population, which
is performed by recombining the features of some selected
solutions and replacing some solutions with the new ones.
The selection and replacement procedures are both compet-
itive processes, while the combination stage is a cooperation
process in which the selected solutions generate new ones
by applying reproductive operators (typically, combination
and mutation). Finally, the MA allows the application of lo-
cal improvement procedures on some of the solutions. The
improvement procedure can be used at different stages of
the optimization process, for example: as a mutation oper-
ator, only at the end of the process, etc. Figure 2 shows a
pseudocode for the MA.

2.4 Computer architecture and GPU compu-
tation

Computer architecture is evolving fast, its trend is moving
forward from a single and fast execution unit with large
memory space to several execution units with small local
memory. Nowadays, multicore processors are common con-
sumer systems. They are progressively replacing high energy-
consumption desktop computers with great success and per-
formance gains and the industry predicts that future com-
puting systems will benefit from this scalable technology.
This evolution is highly beneficial for data-parallel programs,
where independent data processing takes place in the algo-
rithms. An example of a future platform is the massively
parallel graphics processing unit (GPU), with lots of ex-
ecution units, small and fast memory for each processing
core and high memory bandwidth. Using this platform for
demonstration purposes, we can test algorithmic approaches
that would scale well to new generations of desktop comput-
ers.

The term GPU (in contrast to the popular CPU) was coined
by the manufacturer NVIDIA when its GeForce 256 card
was released in 1999. The GPUs of the end of the 90’s sup-
ported multitexturing capabilities and progressively increas-
ing the number of available textures for improving realism
of a 3D scenario. This hardware device was responsible for
the float computation involved in rendering in a very parallel
and efficient way, offloading the computational cost from the
CPU. The next great revolution was the introduction of pro-
grammable stages in the graphics pipeline, which they could
be programmed through graphics abstractions. Later on the
unified architecture enabled the introduction of general pur-
pose computation abstraction layers. Nvidia CUDA [20] is
the hardware/software architecture that offers Nvidia GPUs
as general purpose computation devices exposing their par-
allel processing nature to non-graphics-specialized develop-
ers. The importance of the CUDA program is the algorithm
design, which has to be suitable for a parallel perspective.

37

Figure 3: Flow diagram for the MAPF.

Taking into account this consideration we can adapt a parti-
cle filtering method to the GPU way of computation because
of its usually large population of independent solutions, very
prone to a parallel evaluation.

Shading programming was responsible of a young field, pre-
viously called GPGPU, as for general purpose computation
using GPUs [9]. With the introduction of the unified archi-
tecture in 2006 and the Nvidia CUDA high level abstrac-
tion interfaces, GPUs became scalable and more easily pro-
grammed from the numeric software developer point of view,
without the need of specialized graphics terminology. The
hardware side of Nvidia CUDA is an array of streaming mul-
tiprocessors, while its software side is an extension of the C
programming language that exposes Nvidia GPUs as par-
allel co-processors. It includes directives for GPU memory
management and ways for invoking (launching) GPU pro-
grams (kernel functions) from a usual C application in order
to process a (typically) large portion of data. It is based
on the concept of grid of data blocks as a basic container,
and thousands of light-threads are launched exploiting paral-
lelism and each one executing a copy of the kernel function
on each individual data. The typical CPU-GPU program
would transfer data from the host memory (CPU side) to
the device memory (GPU side). Then the device program,
or collection of kernel functions, would operate on the data
stored in the device memory and later we would send back
the results to the host device. More information about pro-
gramming using C for CUDA can be found on [13].

3. PROPOSED METHOD: MEMETIC AL-
GORITHM PARTICLE FILTER

MAPF is the result of hybridizing the memetic algorithm
(MA) as optimization procedure and the particle filter (PF)

as prediction procedure in two different stages:

• The PF stage focuses on the temporal evolution of a
representative set of solutions. In this stage, a solution
set called SupportSet of size N is propagated in time
and updated to obtain a new set in every time step.
The aim when using PF is to track multiple hypotheses
and use the knowledge about the system dynamics for
future prediction. Then, the key aspect for using PF
is the prediction capabilities of the method to describe
the temporal evolution of the system state.

• In the MA stage, solutions are combined and improved
to obtain new and better ones using the strategies
of the Memetic Algorithm metaheuristic. This stage
is a refinement step embedded in the PF framework.
PF algorithms are not suited to solve optimization
problems, in contrast to MA algorithms. This is the
main reason for using a metaheuristic as a refinement
method in each time step.

Solutions in both MA and PF stages are codified as the
same structure (see Section 4.1 for further details). Figure
3 shows a diagram for the MAPF algorithm. The proposed
method follows the typical stages of a PF, adding a refine-
ment stage after the particle weight computation, previous
to the estimation. This refinement stage is based on a set
of procedures extracted from MA general schema: selection,
combination, mutation and improvement. When the refine-
ment stage is finished, solutions are projected into the next
time step using PF prediction strategies.

MAPF addresses its search towards regions of the solution
space in which finding new better solutions is highly proba-

38

ble. MA stage performs a rational search beyond the simple
stochastic procedure used by PF. On the other hand, PF
stages increase the performance of general optimization al-
gorithms in dynamic problems by improving the quality of
the diverse initial solution set. MA and PF are related in
such a way that when MA improves its results, PF perfor-
mance also improves, and vice versa. PF makes parameter
tuning possible, thereby adjusting the quality and the diver-
sity of the particle set, used as diverse solution set by MA.
On the other hand, MA improves the quality of the particle
set, allowing a better estimation of the maximum of the pdf.

4. MAPF FOR VISUAL TRACKING PROB-
LEMS

This section illustrates the adaptation of the MAPF to be
applied to a general multiple object tracking problem. A
single object tracking problem is a particular case of the one
depicted in this section.

4.1 Structure of a solution
The MAPF manages a population of solutions where each
solution contains the set of required variables describing the
system-state and its weight. The goal is to estimate the po-
sition of the objects in the scene. Therefore, the proposed
state-space model for O object tracking is a 2 × O dimen-
sional space. The structure which stores a solution is a state
vector st = [(xt

1, y
t
1), . . . , (x

t
O, yt

O)], where (xt
o, y

t
o) represents

the position of the object o geometrical center in the global
image frame at time t. The state st corresponds to a parti-
cle with an associated weight πt. Besides, many other time-
dependent objects features (such as their size, orientation,
etc.) could be added to the solution structure.

4.2 Measurement Model
This subtask receives both a video frame at time t and the
global scene static background image as input and returns
the corresponding background subtraction image, binarized
by thresholding. In mathematical terms, the resulting mea-
surement image It

M at time t can be computed as:

It
M (l, w) = (|It(l, w)− IB(l, w)| ≥ th) (4)

where It(l, w) represents at frame t the intensity value of the
pixel of coordinates l, w (l ∈ [1, L] and w ∈ [1, W], where
L and W are the image length and width, respectively), IB

is the background image and th is a predefined threshold.
In this work, we consider that the image regions belonging
to the tracked targets are formed by white labeled pixels
as a result of applying a fixed thresholding after a back-
ground subtraction. Depending on the application context,
any other object detection method (i.e. colour segmenta-
tion, motion analysis, etc.) may also be suitable for this
task.

4.3 Weighting Function
The weight πt at time t assigned to each state described by
a particle st in the PF stage is computed using the measure-
ment image It

M as the sum of the white pixels belonging to
the bounding boxes associated with each object:

πt =

O∑
o=1

πt
o (5)

where πt
o is a weight associated with each object o in the

solution and O is the total number of targets. This is com-
puted as follows:

πt
o =

xt
o+(Lxo/2)∑

l=xt
o−(Lxo/2)




yt
o+(Lyo/2)∑

w=yt
o−(Lyo/2)

It
M (l, w)


 (6)

where (Lxo, Lyo) is the length and width of a bounding box
fitting the object o. These parameters are pre-established
according to the expected dimensions of the targets. The
higher the number of labelled pixels contained in the bound-
ing boxes associated with each object, the higher the likeli-
ness of the particle is.

4.4 PF and MA selection stage
The selection stage is intended to improve the quality of
the set, letting the best particles survive and replacing the
worst ones by better estimators, their average, or even with
the best one provided by the previous stage. We have im-
plemented the PF selection simulating a roulette wheel se-
lection procedure. In this way, we generate for each particle
a uniformly distributed random value in the range [0, πmax]
where πmax is the maximum value of the weights in the
particle set at each time step.

This random value is used as a threshold to evaluate whether
its corresponding particle survives or is replaced based on
its weight. Eventually, this procedure will replace most low
quality particles as, in average, their weight values would not
be very high. However, there should be some probability for
low quality particles to survive because they can provide
diversity to the set.

4.5 PF Diffusion and MA Mutation methods
The PF diffusion and the MA mutation methods are used
to keep the needed diversity in the particle set. They are
absolutely equivalent in our implementation and basically
consist in a random perturbation of the spatial coordinates
of a given particle:

{
x′t = xt + F
y′t = yt + F

(7)

where x, y and x′, y′ denote the spatial variables before and
after the perturbation, respectively, and F is a random uni-
form variable in a given range [minF , maxF]. This is a rea-
sonable implementation of the mutation method, taking into
account that the solution is codified as a real valued vector.

4.6 PF System Model
The system model describes the temporal update rule for
the system state [29]. The tracked object state consists of a
given number of spatial coordinates and their corresponding
velocities, deriving in a first-order system model.





xt+δt = xt + ẋtδt + F
yt+δt = yt + ẏtδt + F
ẋt+δt = ẋt + G
ẏt+δt = ẏt + G

(8)

where x, y denote the spatial variables, ẋ, ẏ are the first
derivatives of x, y with respect to t, δt is the time step

39

and F, G are two excitation forces modeled by random uni-
form variables in a given range [minF , maxF] and [minG,
maxG], respectively, which allow changes in the object state
(position and velocity). The values of [minF , maxF] and
[minG, maxG] depend on the expected changes in the po-
sition and velocity of the tracked object (Usually, minF =
−maxF and minG = −maxG).

4.7 MA Combination Method
This step is one of the most relevant of the MA for the
optimization of the estimation achieved by the previous PF
stage. Let sa = [(xa

1 , ya
1), . . . , (xa

O, ya
O)] and sb = [(xb

1, y
b
1), . . . ,

(xb
O, yb

O)] be any two solutions at time t1, the combination
method provides a solution sc = [(xc

1, y
c
1), . . . , (xc

O, yc
O)] as

follows: 



xc
o =

πa
oxa

o + πb
ox

b
o

πa
o + πb

o

yc
o =

πa
oya

o + πb
oy

b
o

πa
o + πb

o

(9)

where πo represents the weight of object o, ∀o ∈ [1, O(t)].
In other words, sc is the result of the linear combination
of the solutions sa and sb, taking into account the weight
contribution of each object in the scene at time t. There-
fore, the better the object estimations are, the higher the
contribution to the new solution is.

4.8 MA Improvement Method
Given an initial solution st = [(xt

1, y
t
1), . . . , (x

t
O(t), y

t
O(t))]

and a neighborhood defined by a set of movements Ns =
[∆x1, ∆y1, . . . , ∆xM , ∆yM], the improvement procedure gen-
erates new solutions starting from st and performing the unit
movements in Ns. For example, a local search iteration for
the object o involves the following solutions:





(xt
o + ∆xo, y

t
o)

(xt
o −∆xo, y

t
o)

(xt
o, y

t
o + ∆yo)

(xt
o, y

t
o −∆yo)

(xt
o + ∆xo, y

t
o + ∆yo)

(xt
o + ∆xo, y

t
o −∆yo)

(xt
o −∆xo, y

t
o + ∆yo)

(xt
o −∆xo, y

t
o −∆yo)

(10)

This procedure has to be repeated for each object in the so-
lution. We follow a first-improvement strategy, which means
that the process is initialized every time a better solution is
found. The process ends when no improved solutions are
found in the neighborhood considered.

5. IMPLEMENTATION DETAILS: MAPF ON
GPU

In order to efficiently adapt the MAPF to the GPU frame-
work for a visual tracking problem we have to ensure that
we can access to the video stream from the GPU. We up-
load the RGB video frame as a graphics texture, we map it
to a cudaArray and we fetch from the texture to compute
the measurement model. It can be as straightforward as a
map operation if the measurement model is a pixel opera-
tion like filtering, thresholding, background subtraction, etc.

1For the sake of simplicity, superscript t is omitted

16x16

Figure 4: Scheme of the ROI encoding inside subar-
rrays of size 16×16.

The result is attached as a pixel buffer object with the aim
to visualize it if needed with OpenGL interoperability. Then
we can proceed with the particle filter stages.

As stated in subsection 2.4 we need to process data on device
memory using a number of kernel functions. We refer with
the prefix d_ those data stored in device memory.

The initialization kernel reads the states of the particles
population (encoded in d_states) and creates a new buffer
(d_rois) in device memory containing N regions of interest
(ROIs) associated to the number of particles (num_particles)
of the population. If possible, it is a good idea to encode the
ROIs in subarray sizes power of 16×16 in order to ensure a
good data layout and minimize thread ramification in the
next kernels (see Figure 4). After this stage we would usu-
ally get a collection of binary regions in a large buffer where
we can compute the likelihood of each solution contained
in the particle set (particle evaluation). This evaluation is
the most computationally demanding stage of the particle
filter, as it needs to evaluate many pixel locations and per-
form certain operations on them. However, it can be very
efficient for the GPU because of the high bandwidth to on-
board memory, faster than system memory. We can use the
CUDPP scan and compact operations to compute the par-
ticle weights by counting the number of labeled pixels inside
every ROI.

At this point, we can embed the memetic algorithm to en-
hance the population. We take a number of solutions, typ-
ically 16-64 (num_solutions), randomly from the particle
population, so num_solutions<num_particles. These so-
lutions are formed by combining 2∗num_solutions parents
from the particles states. These new solutions are evaluated
as the previous implementation stages, reading from them
and creating and evaluating new ROIs. Every new solution
is included in the particle set replacing num_solutions par-
ticles in the particle set beginning from a random position in
the d_states vector. This is done in a fast device memory
copy operation instead of replacing random states inducing
to random accesses. However, only the best solution is can-
didate for a local search (LS) phase.

The LS looks for better states (positions in our problem)
starting from the best one of the previous stage and moving
systematically through neighborhoods. The different neigh-
borhoods are offline encoded in a vector d_moves and we
use it to evaluate new ROIs as previously described. The
best one is the final estimation of the MAPF. Note that
the GPU parallel evaluation offers a best improvement ap-
proach instead of a first improvement typical serial evalua-
tion scheme.

40

Table 1: Obtained framerates (measured in frames
per second, fps) of the performance of the MAPF
using 64, 256 and 512 particles in the PF stage and
16, 32 and 64 solutions in the MA phase using the
CPU and GPU platforms.

Npart Nsols GPU CPU Speedup
64 16 166.0 57.26 2.90
64 32 164.0 56.79 2.89
64 64 162.0 55.09 2.94
256 16 132.0 37.70 3.50
256 32 130.5 37.60 3.47
256 64 130.0 37.20 3.49
512 16 104.0 25.27 4.12
512 32 103.5 25.20 4.11
512 64 102.5 25.18 4.07

The resampling stage rejects low quality states from the fi-
nal particle set. In order to do so, a random number be-
tween 0 and the maximum weight is created for each parti-
cle. This number is used as a threshold. If a state has lower
weight than its threshold it is replaced by the best estima-
tor. Overall, this stage is a parallel resampling approach
that improves the particle set quality letting the best parti-
cles survive, but also low quality ones providing diversity to
the population.

A final diffusion stage would add some noise to the particle
states, in order to spread repeated states from the previous
stage.

6. EXPERIMENTAL RESULTS
This section is devoted to describe the results obtained by
the tracking system. The experiments were performed on a
2.4GHz Intel R©Quad Core with 4GB RAM using a Nvidia
Geforce 8600GT GPU with 256 MB onboard and Nvidia
CUDA 3.1 with drivers v257.21. We have also used OpenCV
(Open Source Computer Vision) version 2.0 as a wrapper
library to import video sequences to the C for CUDA appli-
cation.

First of all we compare the benefit of the GPU platform mea-
suring different configurations of the MAPF method on CPU
and GPU. The CPU version was coded in C without SIMD
optimizations or multicore programming, but was quite care-
fully optimized in the inner loops. Moreover, the strategy of
the local search of the MA stage was a first improvement on
CPU while on the GPU platform was a best improvement,
that forces to evaluate an entire neighborhood in each itera-
tion. More information about the CPU implementation can
be found in [21]. Attending to the parameters taken into
consideration in the configuration of a MAPF we can test it
with different number of particles in the population of the
PF and different number of solutions in the MA combination
stage. Table 1 resumes this comparison showing the perfor-
mance in frames processed per second (fps) of both platforms
using a video resolution of 320×240 pixels and a ROI size
of 32×32 pixels. In order to give a fair comparison, all the
performance results on GPU include memory transfers from
system memory to GPU onboard memory. We can observe
how the GPU speedup increases in comparison to the CPU
platform when the number of particles increases too. The

#49 #99#0

#49 #99#0

a)

b)

Figure 5: Tracking performance during a synthetic
sequence of a 64x64 square moving from the top
left corner to the bottom right one. a) PF using
a population of 512 particles, b) proposed MAPF
with a configuration of 64 particles, 32 solutions and
128 movements (approximately the same computa-
tional cost than the previous PF configuration). The
MAPF performs better and no zig-zag trajectory is
shown like in the PF tracking.

number of solutions in the MA phase does not affect too
much to the results in both platforms.

Figure 5 shows a synthetic sequence where a white square of
size 32×32 pixels moves through the diagonal and a bound-
ing box of the same size (32×32) is used for tracking. A
particle filter with 256 particles is compared to a MAPF
with only 64 particles, 32 solutions in the memetic algo-
rithm and 128 movements in the local search phase. Both
configurations are similar in terms of computational cost (as
we will show later, 191 fps and 166 fps, respectively). The
MAPF performs much better than the PF, showing a per-
fect tracking without any vibration. The PF does a good
job although it shows some vibration on this perfect mo-
tion. To demonstrate this fact we compute a measure of
the quality results provided by the MAPF algorithm, pre-
cision and accuracy of the estimates. Precision (also called
reproducibility or repeatability) refers to the degree to which
further measurements or calculations show the same or sim-
ilar results. As a measure of precision in coordinate Px, the
average of the standard deviation of the estimations using
series of independent measurements under the same experi-
mental conditions was computed. In mathematical terms:

Px =
1

F

F∑

f=1

√∑M
m=1(x

f,m
E − x̂f)2

M − 1
(11)

where xf,m
E is the estimated value of the target’s x-coordinate

at frame f and experiment m, F is the total number of
frames, M is the total number of experiments and x̂f is the
average value of target’s x-coordinate over all experiments
at frame f :

x̂f =
1

M

M∑
m=1

xf,m
E (12)

41

Table 2: Quality results (F = 240 and M = 10) and
framerates (in fps) of the PF and MAPF on GPU
for video resolutions of 320×240 pixels.
Method Npart Nsols Px Py Ax Ay fps
PF 256 - 0.88 0.94 0.92 1.07 191
PF 512 - 0.70 0.72 0.58 0.62 139
PF 768 - 0.64 0.63 0.47 0.47 109
MAPF 64 16 0.01 0.00 0.01 0.01 166
MAPF 64 32 0.00 0.00 0.00 0.00 164
MAPF 64 64 0.00 0.00 0.00 0.00 162

Accuracy is the degree of conformity of a measured or cal-
culated quantity with respect to its true value. Therefore,
the accuracy computation requires the knowledge of the real
values of the variable. The accuracy Ax in the x coordinate
was computed as follows:

Ax =
1

MF

M∑
m=1

F∑

f=1

(xf
T − xf,m

E)2 (13)

where xf
T and xf,m

E are the true and estimated values of the
target’s x-coordinate, respectively, F is the total number of
frames and M is the total number of experiments. Simi-
lar equations can be applied to compute the precision and
accuracy for the y-coordinate (Py and Ay, respectively).

Table 2 shows the quality of the methods when applied to
the tracking of a synthetic object of dimension 32×32 pixels
using a bounding box of the same size as in the previous
figure. Note that the PF method does not show values in
the Nsols column as they are referred to the memetic algo-
rithm stage. The MAPF method can easily outperform the
PF and shows an almost perfect tracking as the problem is
relatively simple for the local search performed in the MA
phase. Frames per second (fps) are also shown in the last
column and it can be observed how the performance of the
PF with different configurations is about the same as the
MAPF but quality results are a bit lower. Also, the perfor-
mance of the MAPF remains constant as it can compute 16,
32 or 64 combinations in negligible time compared to the
rest of the computation.

The proposed MAPF has been also tested with the public
standard benchmark CAVIAR [1]. Figure 6 shows an exam-
ple of the results obtained by the proposed system on the
Walk1 sequence of the database. A person walking from
the bottom right corner to the upper left corner is tracked
in real time (exhibiting performances of more than 100 fps)
using a configuration of 64 particles in the PF stage and 32
solutions in the MA stage.

7. CONCLUSIONS
In this paper, we have presented an effective hybridization
of a standard particle filter with a memetic algorithm for the
problem of a single object visual tracking in real time. This
new algorithm, called MAPF, has been also implemented
using a stream programming model like Nvidia CUDA. The
particle filter method acts as the sequential estimation filter
in which a memetic algorithm refines its population in order

to improve the estimations for the tracking problem. The
friendly nature of the particle filter as well as the good adap-
tation of the memetic algorithm into the core of the PF has
leaded to very good results in terms of overall performance
and quality.

As future work, we propose the extension of the MAPF to a
multidimensional tracking problem such as a multiple object
tracking or an articulated object tracking in both, synthetic
and real video sequences.

8. ACKNOWLEDGMENTS
This research has been partially supported by the Spanish
projects TIN2008-06890-C02-02.

9. REFERENCES
[1] Caviar test case scenarios.

http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/.

[2] S. Arulampalam, S. Maskell, N. Gordon, and
T. Clapp. A tutorial on particle filters for on-line
nonlinear/non-gaussian bayesian tracking. IEEE
Trans. on Signal Processing, 50(2):174–188, 2002.

[3] R. Cabido, A. S. Montemayor, J. J. Pantrigo, and
B. R. Payne. Multiscale and local search methods for
real time region tracking with particle filters: local
search driven by adaptive scale estimation on gpus.
Mach. Vision Appl., 21(1):43–58, 2009.

[4] J. Carpenter, P. Clifford, and P. Fearnhead. Building
robust simulation based filters for evolving data sets.
Technical report, Dept. Statist., Univ. Oxford, Oxford,
U.K, 1999.

[5] J. Cui and Z. Sun. Vision-based hand motion capture
using genetic algorithm. In Lecture Notes in Computer
Science, volume 3005, pages 289–300, 2004.

[6] J. Deutscher. Articulated body motion capture by
annealed particle filtering. In IEEE Conference on In
Computer Vision and Pattern Recognition, pages
126–133, 2000.

[7] J. Deutscher and I. Reid. Articulated body motion
capture by stochastic search. Int. J. Comput. Vision,
61(2):185–205, 2005.

[8] N. J. Gordon, D. Salmond, and A. Smith. Novel
approach to nonlinear/non-gaussian bayesian state
estimation. IEE Proceedings F Radar & Signal
Processing, 140(2):107–113, 1993.

[9] GPGPU: General-purpose computation using graphics
hardware. http://www.gpgpu.org, 2010.

[10] W. Hart, N. Krasnogor, and J. Smith. Recent
Advances in Memetic Algorithms. Springer-Verlag
New York, Inc., 2005.

[11] M. Isard and A. Blake. Visual tracking by stochastic
propagation of conditional density. In 4th European
Conf. Computer Vision, pages 343–356, 1996.

[12] M. Isard and A. Blake. Condensation - conditional
density propagation for visual tracking. International
Journal of Computer Vision, 29:5–28, 1998.

[13] D. B. Kirk and W. mei W. Hwu. Programming
Massively Parallel Processors: A Hands On Approach.
Morgan Kaufmann, 2010.

[14] J. MacCormick. Stochastic Algorithms for Visual
Tracking: Probabilistic Modelling and Stochastic

42

#0 #15 #30

#45 #60 #75

Figure 6: Tracking performance of the MAPF in a real sequence from the CAVIAR database.

Algorithms for Visual Localisation and Tracking.
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2002.

[15] J. MacCormick and A. Blake. Partitioned sampling,
articulated objects and interface-quality hand
tracking. In 7th European Conference on Computer
Vision, volume 2, pages 3–19, 2000.

[16] A. S. Montemayor, J. J. Pantrigo, A. Sánchez, and
F. Fernández. Particle Filter on GPUs for Real Time
Tracking. In ACM SIGGRAPH 2004 posters, 2004.

[17] P. Moscato. Memetic Algorithms: a short introduction,
pages 219–234. McGraw Hill, 1999.

[18] P. Moscato and C. Cotta. A gentle introduction to
Memetic Algorithms, pages 105–144. Kluwer Academic
Publishers, 2003.

[19] W. Ng, J. Li, S. Godsill, and J. Vermaak. Tracking
variable number of targets using sequential monte
carlo methods. In IEEE Statistical Signal Processing
Workshop, pages 1286–1291, 2005.

[20] NVIDIA. CUDA Zone.
http://www.nvidia.com/object/cuda home.html,
2010.

[21] J. J. Pantrigo, J. Hernández, and A. Sánchez. Multiple
and variable target visual tracking for video
surveillance applications. Pattern Recognition Letters,
31(12).

[22] C. Rossi, M. Abderrahim, and J. C. Dı́az. Tracking
moving optima using kalman-based predictions. Evol.
Comput., 16(1):1–30, 2008.

[23] S. Särkkä, A. Vehtari, and J. Lampinen.
Rao-blackwellized particle filter for multiple target
tracking. Information Fusion Journal, 8:2–15, 2007.

[24] S. Shen, M. Tong, H. Deng, Y. Liu, X. Wu,
K. Wakawbayashi, and H. Koike. Model based human
motion tracking using probability evolutionary
algorithm. Pattern Recognition Letters, 28:1877–1886,
2008.

[25] S. Thrun. Particle filters in robotics. In 17th Annual
Conference on Uncertainty in AI (UAI), 2002.

[26] I. K. Yalçin and M. Gökmen. Integrating differential
evolution and condensation algorithms for license

plate tracking. In ICPR ’06: Proceedings of the 18th
International Conference on Pattern Recognition,
pages 658–661, Washington, DC, USA, 2006. IEEE
Computer Society.

[27] A. Yilmaz, O. Javed, and M. Shah. Object tracking:
A survey. ACM Comput. Surv., 38(4):13, 2006.

[28] L. Zhu, J. Zhou, and J. Song. Tracking multiple
objects through occlusion with online sampling and
position estimation. Pattern Recognition,
41(8):2447–2460, 2008.

[29] D. Zotkin, R. Duraiswami, and L. Davis. Joint
audio-visual tracking using particle filters. EURASIP
Journal on Applied Signal Processing, 11:1154–1164,
2002.

43

44

A Parallel Memetic Algorithm for Workload Distribution in
Dynamic Multi-Agents Systems

David Millán Ruiz
Telefónica R&D
Emilio Vargas, 6

Madrid, Spain
+34-913372638

dmr@tid.es

J. Ignacio Hidalgo
Complutense University of Madrid

School of Informatics
Madrid, Spain

+34-913947537

hidalgo@dacya.ucm.es

ABSTRACT
This paper describes a parallel evolutionary approach to the
problem of workload distribution in dynamic multi-agent systems
based on blackboard architectures. Specifically, we focus on the
multi-skill call centre use case. This type of call centres entails
quick adaptations to a changing environment that only some
greedy algorithms have been able to cope with. These greedy
heuristics consist of a continuous re-planning, considering the
current state of the system. As these decisions are greedily taken,
the workload distribution may be poor for middle and/or long
term planning due to incessant wrong movements. The use of
parallel memetic algorithms, which are much more complex than
classical, ad-hoc heuristics, can guide us towards more accurate
and robust solutions. Now, the difficulty underlies in how to
apply these techniques to uncertain, ever-changing environments.
Specifically, in previous studies, we proposed a neural network to
make accurate predictions and a single memetic algorithm as a
heuristic optimisation mechanism, improving the results obtained
by other well-known techniques of the call centre domain. In this
study, we upgrade our approach by parallelising the memetic
algorithm and carrying out a deeper analysis.

General Terms
Algorithms, Experimentation.

Keywords
Parallel Memetic Algorithms, Dynamic Multi-Agent Systems,
Multi-Skill Call Centre.

1. INTRODUCTION
Over the last decade, a gradually-growing interest in parallel

and distributed computing has arisen in computer science. This
concern has guided research activities towards areas such as
parallel and distributed programming, distributed information
systems, and parallel and distributed hardware architectures.
Truthfully, there exists a vast bibliography (e.g. see [1, 4, 17])
related to this issue, although there are still paths to explore.

Furthermore, we perceive a tendency to tackle increasingly
complex problems and application domains which commonly
involve the processing of uninterrupted, dynamic data flows.
These demanding environments are usually hard to be efficiently
maintained by conventional and sequential techniques.
Nevertheless, parallel and distributed methods not only mitigate

this drawback but also present several valuable characteristics
such as robustness, traceability, problem simplification,
adaptivity, scalability and speed-up.

Conversely, dynamics, synchronisation and behaviour appear
as intricacies of parallel and distributed information systems
because the representation of linear problems into sub-problems is
not always feasible or simply straightforward.

Anyhow, parallel and distributed systems should somehow
self-improve to attain high performance. In fact, nowadays, a wide
range of studies on adaptive techniques in parallel and distributed
information systems can be found [2, 8].

A classical, well-suited problem for studying dynamic
systems is the workload distribution in Multi-Agent Systems
(MAS) [21]. The term intelligent agent [10] describes an
autonomous entity which is able to observe and interact with its
environment in order to accomplish a given set of tasks [19].
When several agents interact, they may compile a multi-agent
system. Characteristically, such agents have a partial point of view
of the problem and thus need to cooperate with other agents.
Furthermore, there may be no global control and consequently
such systems are sometimes denoted as swarm systems. In these
cases, data are decentralised and execution is asynchronous.
Although there are numerous types of MAS, we will focus on
those Dynamic Multi-Agent System (DMAS) encapsulated in
blackboard architectures [9, 11]. In other words, we will work on
DMAS with a common repository of knowledge.

Commonly, the basic variant of the problem of workload
distribution in a DMAS requires the assignment of tasks to agents
which have the required skills to handle them over time, fulfilling
a predefined set of additional constraints and respecting the
dependencies among individual tasks and differences in the
execution skills of the agents.

This problem has diverse variants but, depending on the
dynamism of the system, we can principally distinguish two main
scenarios:

1. On the one hand, we can find short-term planning
environments in which a continuous planning is needed due
to the high dynamism of the system. These solutions attempt
to distribute the workload among agents by applying “basic”
ad-hoc heuristics, looking at the current system state (without
predictions or predictions for a short term time-frame). This

WPABA '10 45 ISBN 978-84-693-6141-2

feature can be effortlessly seen in workload allocation within
a dynamic multi-skill call centre [3].

2. On the other hand, we can find long-term planning systems
in which the list of tasks is predefined and known by all
agents like in the classic scheduling problem [6]; or
environments in which a single task type is assigned to each
agent for a long period of time, similarly to the job
assignment problem [7]. In other cases, agents are assigned
to patterns of tasks, instead of specific tasks (such as in
pattern-based scheduling [6]). Analogously, stable multi-
skill call centres [3] can be also included in this group. These
solutions consider stable behaviour over time, anchored in
historical data and apply more complex algorithms to match
agents and task types. However, when having a dynamic
system, these approaches cannot be efficiently applied, since
an adaptive method is required.

Our proposal is encapsulated in the first scenario (dynamic
systems) as Figure 1 illustrates.

Figure 1. Adaptive time-frame.

Table 1 summarises some key features of the environments
described in the preceding paragraphs, according to the time-
frame considered.

Table 1. Comparison of the time-frame size considered for the
workload distribution problem

Time
frame

Complexity
Response

time
Adaptability Performance

Short Low Low medium medium

Middle high Medium high high

Long medium High low low

Specifically, we will focus on a specific use case which is the
multi-skill call centre as it covers all the general characteristics of
a typical DMAS.

In the study [14], we presented a hybrid system (consisting
of a neural network to predict upcoming system states and a
“basic” Memetic Algorithm (MA) to optimise the allocation of
workload for those predicted system states) which improved the
most representative techniques of the state of the art. The
assumption behind the solution proposed in [14] can be
summarised as: "in highly dynamic systems, it is preferable to
make strategic plannings for a middle-term time-frame (assuming
certain noise as predictions are not 100% accurate) than to make
poor plannings for a short-term time-frame repeatedly".

Ad-hoc heuristics intelligently consider the current state of
the system but, due to time constraints, they have to execute very

simple operations to route each task to the corresponding agent
(or sometimes to groups of agents) in near real time. However, if
we could make predictions of future states for a middle-term time-
frame with enough accuracy, we could apply more sophisticated
techniques that would enable us to obtain accurate enough
solutions for these stages. Obviously, we are missing some
"snapshots" of intermediate states along the way but, if the “time
jumps” are small enough, we can assume certain seasonality in the
system. Therefore, system changes will be minimal and any
optimal solution for that system state will be potentially
appropriate for the whole interval. Depending on the dynamics of
the system, time-frames must have greater or lesser extent. The
size of the time-frame can be automatically determined by
analysing the variability of the predictions provided by the neural
network. To analyse that variability, we measure the mean
absolute error made at t-v (latest time-frame), where v is the size
of the prediction window expressed in terms of seconds.

The main contribution of this work lies in the extension and
parallelisation of the approach presented in [14]. We also provide
a deeper testing than the one done in [15] (different data sets,
more executions and a deeper analysis the results).

The rest of this paper is organised as follows: Section 2
presents the problem definition adapted to the multi-skill call
centre use case, highlighting the complexity of this application
domain. Section 3 summarises how the problem was solved in
[14, 15] and explains how that work has been extended for this
paper. Section 4 provides an evaluation of the model and
promotes an analysis of results. In this evaluation, we will
compare our approach with other acknowledged techniques.
Finally, Section 5 concludes by summarising our work and
provides some guidelines for future work.

2. PROBLEM DEFINITION
In a common DMAS, there are n tasks or work items

grouped in k types of tasks and m agents that may have up to l
skills (l ≤ k) to perform these works. In this manner, each agent
can process different types of tasks and, given a type of task, it
can be carried out by several agents that have that skill. The set of
skills an agent has is frequently denoted as profile. These profiles
can be truly heterogeneous as there are massive potential skills.

Although agents may have multiple skills, each agent can
only process one operation at the same time. Furthermore, given
an operation, it requires an unknown amount of time to be
accomplished. Besides, each agent must orderly process each
operation during an uninterrupted period of time; in other words,
the task cannot be divided or postponed once it has already
started.

As we have already mentioned, we will focus on the multi-
skill call centre use case. Therefore, we will adapt the definition of
a classical DMAS to the call centre domain.

A Call Centre (CC) [5] is a centralised office used for
receiving and transmitting large volumes of telephone requests
which may range from customer service to the selling of products
and services. In a CC, the flow of calls is often divided into
outbound and inbound traffic. Outgoing calls are handled by
agents, primarily, with commercial pretensions. This type of calls
is planned as agents know in advance which customers must be
contacted every day. Conversely, incoming calls are those that go

46

from the client to the CC to contract a service, ask for information
or report a problem. These unplanned calls are initially modelled
and thus classified into manifold Call Groups (CGs) in relation to
the nature of each call (complaints, V.I.P. clients, client loyalty,
etc.). As soon as these CGs have been modelled, each call is
assigned to a unique CG (there is no overlap among CGs).

A specific type of CC is the Multi-Skill Call Centre (MSCC).
In an MSCC, there are n customer calls grouped in k types of calls
and m agents that may have up to l skills (l ≤ k). This implies that
each agent can attend different types of calls and, given a type of
call, it can be answered by several agents that have that skill.

Figure 2 illustrates the relationship among client calls,
queues and agents. This figure describes an example for 9 client
calls grouped in 4 CGs and 5 agents having different real skills.

Figure 2. Multi-skill call centre configuration based on

the potential skills of all agents.

More formally speaking, the following parameters can be

found in an MSCC:
- a finite set of n customer calls },...,,{ 21 ncccC = .

- a finite set of k CGs (call groups/types)
}...,,,{ 21 kcgcgcgCG = , where nk ≤ when every CG

has, at least, one call queuing.
- a finite set of m agents }...,,,{ 21 maaaA= . Note that,

usually, m >>k.
- a finite set of k agent-skills }...,,,{ 21 ksssS= in

which each agent-skill, is , represents the ability to

handle the associated CG,
icg , with the corresponding

sub-index in CG: kk cgscgscgs ~,...,~,~ 2211 .

- a finite set of d agent-skill profiles }...,,,{ 21 dPPPP =

in which each agent-skill profile Pi can be any subset of

}...,,,{ 21 ksssS= .

- a finite set of n operations (execution or processing of
each customer call,

ic) }...,,,{ 21 noooO = in which

each operation,
io , has associated a mean processing

time which depends on its CG: },...,,{ 21 kτττ .

The solution to the problem of the workload distribution in
MSCCs is defined as the right assignment for every agent ai to the
most suitable skill profile Pj from his/her real skill profiles for
each v seconds, where v is the size of the time-frame considered.

In addition, the assignment
tji Pa , must satisfy all hard

constraints and handle the soft ones given by the business units.
To determine whether (or not) a given solution is suitable, we
need to define a quality metric to evaluate the rightness of each
feasible solution. There are very significant metrics to measure the
quality of a CC such as the abandonment and service rates. These
metrics somehow hinge on the (customer) service level [13] which
is defined as the percentage of customer calls that have to queue
shorter than a specified amount of time (20 seconds in our case).
Our work has been conducted by applying this metric.

Moreover, the solution must fulfil the following descriptions:

- on O define R, a binary relation which represents the
precedence among operations. If Roo ∈),(21

 then o1

has to be performed before o2.
- each agent,

ia , has associated a finite non-null subset of

P, containing his skills to handle different customer
CGs (individual real skill-profile).

- the same profile
iP can be assigned to several agents. In

other words, several agents may have some skills in
common (or even all of them).

- every agent,
ia , may have several profiles assigned but

only one can be performed at a given instant t,
tji Pa , .

In other words, an agent cannot process two (or more)
incoming calls at the same instant.

- every solution must respect diverse (hard and soft)
constraints given by business rules defined by business
units or agents’ regulations.

The complexity of this problem is huge because we are not
only dealing with an NP-hard problem like the job assignment
problem, but also considering high dynamism, massive incoming
customer calls and large number of agents having multiple skills.
Besides, since customer calls are not planned, this makes the call
assignment a truly laborious task.

3. EXTENSION OF THE MODEL
This section summarises the methodology employed by our

approach in [14] and how we have extended it in this study. In
[14], we present an approach consisting of two main modules: a
predictive module and a search module. The purpose of the
present paper is to extend [14] by parallelising the MA and
presenting the link between both modules as Figure 3 shows.

The search module and the forecast module need each other
to properly distribute the workload among agents. However, there
are other steps in between which link these two modules.

The first step consists in determining the right size of the
time-frame by analysing the system variability. Once the right size
for the time-frame has been established, we must forecast all
variables of next system state at time t+v, (v is the size of

47

the time-frame). These predictions are made by means of a
forecast module which relies on an artificial neural network which
is fully described in [18]. Given the predictions from the forecast
module, the search module, implemented as a parallel steady-state
MA, optimises the assignment among task types and agents.

Figure 3. Overall process ���� forecast module + search module.

We propose an island topology and migration operators for
individuals exchanging. We will consider a master island and
several subordinate islands. Each island corresponds to a single
MA. Each MA maintains a set (population) of abstract
representations (chromosomes) of candidate solutions
(phenotypes) to the problem described in Section 2. The
population is partially randomly initialised. Then, its individuals
are evaluated by applying a fitness function over them. From this
population, some individuals are selected and, then, recombined
(crossover). Subsequently, the offspring may suffer mutations in
some genes. Afterwards, some of these individuals replace others
from the population according to the replacement scheme. Every
generation includes all previous actions. An LS mechanism is
applied over a percentage of the population each g generations.
All these steps are carried out in each island until a predefined
time has been elapsed. Note that all the islands cooperate for a
common goal, exchanging their best fitted individuals.

3.1 Encoding, Initialisation and Population
We will encode every solution as an array of integers whose

indexes represent the available agents at a given instant and the
array contents refer to the profile assigned to each agent. Figure 4
shows a fictitious example of encoding, related to Figure 2, for 9
customer calls (c1-c9) queued in 4 different CGs (cg1-cg4)
depending on the nature of the calls, 5 agents (a1-a5) and 7
profiles (P1-P7), where P1={s1}, P2={s1, s2}, P3={s2}, P4={s2, s3},
P5={s1, s3}, P6={s3} and P7={s4}. Now, suppose that the agents
have the following potential skill profiles: a1~{P1,P2},
a2~{P1,P3,P7}, a3~{P4,P5}, a4~{P6} and a5~{P2,P3,P7}. We have
seen the potential profiles for every agent but only one profile can
be assigned to each agent at a given instant t; therefore, a feasible

solution would be Figure 4. Note that more than one agent can
have assigned the same profile (e.g. a1 and a5).

Index (agents) � 1 2 3 4 5

Content (profiles) � 2 7 4 6 2

Figure 4. Example of encoding for an MSCC.

The population contains 20 different individuals encoded as
hinted above. In our case, we propose to start from a randomly
generated initial population, including the best solution found in
the previous time-frame because the configuration of agents’
profiles should not change too much over two successive time-
frames (consecutive states).

3.2 Fitness Function
Now, we present the fitness function which is defined over

the proposed encoding to measure the quality of a given solution.
Our fitness function is inspired in the estimation of the total
service level provided in [13] although we also consider the
priority of each CG weighted as follows:

Total_service_level = µ))α,(γSL(Pr
k

0i
iiii∑

=

×× (1)

{ }[0,1][0,1][0,1]:sl →××ℜ where k refers to the number of

CGs, µ is a normalising factor (∑
=

k

0i
iPr1/), Pri is the priority of

the CGi whose service level is defined as
()

β

τ
mγ

iii

i
ii

ere_busy)P(Agents_a1)m,(γSL
−−

×−= given that
1

1γ

0ζ
1ζγ

i

i

i

ii
i

im

1)1)...(ζ(γ

m

m-γ
1re_busy)P(Agents_a

−
−

=
−− 







 +−+= ∑

 where iγ is the load of CGi (number of incoming calls of CGi by

the mean processing time:
ii τ×n), mi is the number of agents of

CGi (based on the profiles assigned in the chromosome), iτ is the

number of agents of CGi and β is the duration of the time-frame

expressed in seconds.

Additionally, we handle some hard and soft constraints
derived from the business rules given by our business units. In our
case, these constraints are associated to tasks, agents, timing,
actions or desired/undesired scenarios. Thus, the algorithm cannot
violate hard constraints (e.g. we cannot change agents’ profiles
continuously due to certain laws and regulations); although we
allow certain movements which may imply the violation of some
soft constraints (e.g. we should not take agents from CGs in which
the service level is below a given threshold). Undoubtedly, this
type of movements is penalised according to the degree of non-
accomplishment of these constraints and their relevance.

Therefore, the fitness function can be formalised as follows:

 tionss_penalisaconstraint - vice_level total_ser= f (2)

48

])1,1[]1,0[]1,0[:(−→×f where constraints_penalisation is the

value obtained after applying our business rules (e.g. agents from
CG-i should not move to CG-j).

Finally, we can speed-up the evaluations by introducing a
partial fitness function. The first time, we need to employ (2) but
the rest of the time; we just need to evaluate those groups affected
by a mutation or, in the case of the LS, when generating a new
neighbour. Hence, we only process the affected CGs in (1) and
update their original values. With this information, we then
recalculate (2).

3.3 Evolutionary Operators
In this section, we explain the final configuration of the

evolutionary operators. This configuration is the following one:

- Selection: Since the population needs to be bred each
successive generation, we have chosen a binary
tournament selection.

- Crossover: The following step is to produce a new
generation from selected individuals. We consider that
children will inherit the common points in their parents
and randomly receive the rest of genes from them.

- Mutation: This operator causes tiny changes in the
genes of the chromosome to explicitly maintain
diversity (actually there are much more mechanisms).
We apply a perturbation over each gene of the
chromosome with a probability of 0.03. This
perturbation corresponds to changes of profiles in some
agents (e.g. agent a2 who had assigned the profile P1 has
now associated the profile P3 due to a mutation).

- Replacement policy: Finally, we decide which
individuals are incorporated (or maybe reinserted) into
the population. In this study, we consider elitism with a
probability of 0.93 to replace the worst individuals of
the population for next generation. And, with a
probability of 0.07, a worse individual may be captured.
Note that our MA relies on a steady-state scheme.

The configuration proposed above has not been chosen ad-
hoc. Instead, we have evaluated different configurations and
selected the best one.

3.4 Local Search
LS is a Meta-Heuristic (MH) for solving optimisation

problems. An LS algorithm starts out from a candidate solution
and, thus, iteratively moves to a neighbour solution, generating
the neighbourhood. To carry out this action, a neighbourhood
relation must be defined on the search space. In our case, we state
that two candidate solutions are neighbours if only one gene
differs in both chromosomes. Note that we propose a simple LS
due to the lack of time of our production environment (300
seconds).

The following pseudo-code illustrates the LS algorithm
which is applied to:

void Local_Search (Chromosome & candidate_solution)

 Chromosome best_solution = candidate_solution;

 Chromosome neighbour = candidate_solution;

 For (i=0; i<candidate_solution.size(); i++)

 Agent a = neighbour.getAgent(i);
 For (j=0; j<a.get_number_profiles(); j++)

neighbour.change_profile(i,j); //profile j for agent i

 If (neighbour.fitness() > best_solution.fitness())
best_solution = neighbour;

 neighbour = best_solution;

 candidate_solution = neighbour;

3.5 Memetic Algorithm
Once we have the evolutionary operators, we need to define

the refinement mechanism and select a target subpopulation to
refine. Another important issue is the refinement frequency.

- Refinement algorithm: The refinement mechanism is the
basic LS described in Section 3.4.

- Subpopulation for LS: The LS is applied over the best
25% of individuals.

- LS frequency: The LS is applied over the selected
individuals each 10 generations.

3.6 Parallel Memetic Algorithm
The last step is to parallelise the MA. We will apply an

island model (each island is an MA) with several subordinate
islands connected to a master island as follows:

- Topology: We consider a star topology with 4
subordinate islands (as Figure 5 illustrates) which
correspond to “simple” MAs. These islands are
connected to a master island (another “simple” MA
which coordinates and synchronises the rest of islands).

- Migration: Each subordinate island sends the 10% of the
best fitted individuals when the master island
asynchronously demands these individuals to the rest of
islands.

- Replacement policy: We will apply elitism so that the
best fitted individuals from the subordinate islands will
replace the less fitted individuals from the master
island’s population whether those individuals are better
fitted.

- Migration frequency: Each 50 generations, the master
island blocks the rest of islands to ask them for their best
fitted individuals.

Figure 5. Star topology with 4 subordinate islands and a
master island.

49

4. EVALUATION OF RESULTS
In this section, we analyse the results obtained by applying

the configuration of the Parallel MA (PMA) proposed in this
article. We assume that the forecast module is accurately feeding
the search module (which is the case) with the upcoming system
state for a properly determined prediction window (by analysing
the dynamism of the system).

Afterwards, we will compare our PMA with the “simple”
MA (SMA) proposed in [14] to verify the importance of this
parallelisation. We will also analyse the results obtained by
applying other well-known MHs such as Simulated Annealing
(SA) [12], Iterated Local Search (ILS) [20] and Variable
Neighbourhood Search (VNS) [16]. For this comparison, we will
launch experiments for two different problem instances (with
medium and high difficulty, respectively). These two instances are
real data taken from our MSCC’s production environment during
two different days at the same hour (from 12:40 to 12:45, 300
seconds): a one-day campaign and an ordinary day. The size of
the time-frame to execute all the MHs is 300 seconds (5 minutes)
because we need to provide the system with a solution exactly
each 300 seconds. We have selected this time interval because this
hour (between 12:30 and 13:00) is very representative as this is
precisely the most critical hour of the day (highest arriving load of
the day: n/m). Note that around 800 incoming calls (n)
simultaneously arrive during a normal day in such a time interval,
whereas up to 2450 simultaneous incoming calls may arrive
during this interval during a commercial campaign. The number
of agents (m), for each time interval, oscillates between 700 and
2100, having 16 different skills for each agent on average
(minimum=1 and maximum=108), grouped in profiles of 7 skills
on average. The total number of CGs considered for this study is
167. Therefore, when the workload (n/m) is really high, finding
the right assignment among agents and incoming calls becomes
fundamental. In this way, we have run every MH under two
double-core processors of a Sun Fire E4900 server (one processor
for the interfaces and data pre-processing, and the other one for
each MH).

Once the magnitude of our MSCC has been presented, each
MH is compared alongside the others. Table 2 summarises the
results obtained by each MH in 50 executions, starting from 50
different randomly generated initial solutions.

In our comparative study, we present dissimilar MHs which
cover diverse strategies. Theoretically, due to the local character
of the basic LS, it is complicated to reach a high-quality solution
because the algorithm usually gets stuck in a neighbourhood when
a local minimum is found. This occurs because its search engine is
always looking for better solutions which sometimes do not
actually exist in the neighbourhood. For this reason, occasionally,
it is more appropriate to allow deterioration movements in order
to switch to other regions of the search space. This is precisely the
smart policy of SA whose temperature (cooling simulation) allows
for many oscillations (the probability of accepting a worse
solution decreases over time) at the beginning of the process and
only few fluctuations at the end (fewer chances to select a worse
solution as the algorithm is supposed to be refining the solution at
this point). Specifically, we have chosen Cauchy’s criterion
because the convergence is faster than Boltzmann’s and we only
have 300 seconds to run the complete process. Besides, this
scheme avoids decreasing the distance between two solutions

when the process converges (jumps in the neighbourhood).
Therefore, the temperature must be high enough at the beginning
to better explore the search space (its neighbourhood) and low
enough at the end to intensify the search as well (exploitation of
promising areas). The value for speed is, therefore, the stopping
condition which must agree with the number of neighbours
generated.

Table 2 gathers the results obtained by each MH in 50
different executions for two different problem instances with the
purpose of providing a fair comparison. The first three columns
are the best, worst and mean fitness values, respectively. Then, we
have the standard deviation and the effectiveness (best fitted
solution represents the 100%).

We perceive from Table 2 that SA behaves worse than other
MHs except for the easiest instance of the problem. This may
occur because we are not plenty of time in our environment and
the power of SA relies on a progressive cooling. If we cool off the
temperature too fast, we are missing the effectiveness of accepting
worse solutions in some cases. Instead, if we cool off the
temperature too slowly, we may be accepting worse solutions
systematically without converging. We have applied a trade-off
between exploration and exploitation but the time seems to be
limited to apply SA to our environment (perhaps, things might
change when having more time).

Another option to increase the diversity in the solutions is to
enlarge the environment, as VNS does. This philosophy consists
of making a systematic change upon the environment when the LS
is used, increasing the environment when the process becomes
stagnated. In the VNS, the search is not restricted to only one
environment as in the basic LS; instead, the neighbourhood
changes as the algorithm progresses. Albeit we only consider
three distinct neighbourhoods, the improvement of the VNS
compared to basic LS is noteworthy. Consequently, the
remarkable factor becomes the change in the number of
neighbourhoods and their sizes as well as to consider how the
algorithm reacts in response.

Table 2 also shows how VNS only slightly outperforms SA
for the hardest instance of the problem.

Another strategy is to start from different initial solutions as
ILS accomplishes. ILS generates a random initial solution and
afterwards applies a basic LS. Subsequently, this solution is
systematically mutated and thus refined. ILS obtains solutions
which vaguely improve those given by SA and VNS for the
hardest problem instance, although it performs worse for the
simplest problem instance as Table 2 corroborates.

Another way to find a solution involves using methods based
on populations, such as MAs. If the diversity of the solution is
low, then the MA converges to the closest neighbour.
Nevertheless, when the selective pressure is high, individuals may
be alike or even identical. To speed-up the convergence, MAs
apply an LS upon a set of chromosomes (candidate solutions) that
are refined every certain number of generations. Incorporating a
hybridisation mechanism to the GA is valuable as the algorithm is
improved in all respects. This fact is pointed up in Table 2 as the
MA not only outperforms all the strategies for both instances but
also remains more unwavering (less differences among best, worst
and mean fitness values).

50

Finally, it is important to remark that differences among
techniques are not huge after reaching a fitness of 0.8 since the
complexity increases exponentially in our environment.

Therefore, minor improvements on the fitness value after that
point are hard to obtain but very valuable to accomplish a fair
workload distribution.

5. CONCLUSIONS AND FUTURE
WORK

We have presented a parallel evolutionary approach to the
problem of workload distribution in dynamic multi-agent systems
based on blackboard architectures (common repository of
knowledge). We have seen that these systems are extremely
complex and involve quick adaptations to a varying environment
that only high-speed greedy heuristics can deal with. These greedy
heuristics consist in a permanent re-planning, considering the
present system state. However, these quickly taken decisions are
not appropriate for middle and/or long term planning due to the
incessant erroneous movements.

However, we have demonstrated that the use of parallel
memetic algorithms, which are more versatile than classical
heuristics, can guide us towards more accurate solutions. With the
intention of applying parallel memetic algorithms to such a
dynamic environment, we have put forward a reformulation of the
traditional problem of workforce distribution in dynamic multi-
agent systems based on backboard architectures, which coalesces
predictions of future system states with a precise search
mechanism, by dynamically enlarging or diminishing the time-
frame considered. We have claimed that the size of the time-frame
depends upon the dynamism of the system (smaller when there is
high dynamism and larger when there is low dynamism).

Our approach has been tested out on a real-world production
environment from Telefónica which is one of the largest telephone
operators around the world.

The present work has also illustrated how nearly optimal
solutions each v seconds (size of the time-frame) outperforms
continuous bad distributions when the right size of the time-frame
is determined, and predictions and optimisations are correctly
carried out. Particularly, we have put forward a neural network

for predicting future system variables and a parallel memetic
algorithm based on an island scheme to perform the assignment of
incoming tasks to the right available agents.

We can conclude that PMAs not only outperform other MHs
but also remain more unwavering as systematically provide better
results.

As future work, we propose to do a similar study considering
parallel MHs and different time-frame sizes.

6. REFERENCES
[1] Andrews, G.R.: Foundations of Multithreaded, Parallel, and

Distributed Programming. Addison–Wesley, ISBN 0-201-
35752-6, 2000.

[2] Asiki, A.; Tsoumakos, D. and Koziris, N.: An Adaptive On-
line System for Efficient Processing of Hierarchical Data.
Proceedings of the 18th International ACM Symposium on
High Performance Distributed Computing (HPDC'09),
Garching, Germany, 2009.

[3] Avramidis, A.N.; Chan, W.; Gendreau, M.; L’Ecuyer, P. and
Pisacane, O.: Optimizing daily agent scheduling in a
multiskill CC. European Journal of Operational Research
(2009).

[4] Baeza-Yates, R. and Ribeiro-Neto, B.: Modern Information
Retrieval. Acm Press Series, Addison Wesley, 1999.

[5] Bhulaii, S.; Koole, G. and Pot, A.: Simple Methods for Shift
Scheduling in Multiskill Call Centers. M&SOM 10(3), 411–
420, 2008.

[6] Brucker, P.: Scheduling algorithms. 2nd edn. Springer,
Heidelberg, 1998.

[7] Chauvet, F.; Proth, J.M. and Soumare, A.: The simple and
multiple job assignment problems. International Journal of
Production Research 38(14), 3165–3179, 2000.

[8] Chen, Z.; Yang, M.; Francia, G. and Dongarra, J.: Self
Adaptive Application Level Fault Tolerance for Parallel and
Distributed Computing. ipdps, pp.414, IEEE International
Parallel and Distributed Processing Symposium, 2007.

Algorithm
Best Solution Worst Solution Average Standard Deviation Effectiveness

Medium Hard Medium Hard Medium Hard Medium Hard Medium Hard

PMA 0.834 0.818 0.823 0.783 0.829 0.809 0.003 0.002 100 100

SMA 0.796 0.758 0.785 0.751 0.796 0.754 0.001 0.001 96.01 93.20

ILS 0.768 0.728 0.755 0.722 0.763 0.725 0.002 0.003 92.03 89.61

VNS 0.790 0.727 0.766 0.723 0.775 0.724 0.005 0.001 93.48 89.49

SA 0.782 0.721 0.773 0.709 0.779 0.716 0.001 0.003 93.96 88.50

Table 2. Results obtained by the MHs in 50 executions, starting from randomly generated initial solutions for two problem instances:
medium and hard (larger number of incoming calls and high variability). Values refer to the fitness obtained by all MHs.

51

[9] Erman, L.; Hayes-Roth, F.; Lesser, V.R. and Reddy, D.R.:
The Hearsay-II Speech-Understanding System: Integrating
Knowledge to Resolve Uncertainty. Computing Surveys,
12(2):213-253, 1980.

[10] Franklin, S. and Graesser, A.: Is it an Agent, or just a
Program?: A Taxonomy for Autonomous Agents.
Proceedings of the Third International Workshop on Agent
Theories, Architectures, and Languages, Springer-Verlag,
1996.

[11] Hayes-Roth, B.: A blackboard architecture for control.
Artificial Intelligence, pp. 251-321, 1985.

[12] Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P.: Optimization
by Simulated Annealing. Science, Volume 220, Number
4598, 13 May 1983, pp. 671680.

[13] Koole, G.: Call Center Mathematics: A scientific method for
understanding and improving contact centers,
http://www.cs.vu.nl/~koole/ccmath/book.pdf , 2006.

[14] Millán-Ruiz, D. and Hidalgo, J.I.: A Memetic Algorithm for
Workload Distribution in Dynamic Multi-Skil Call Centres.
Proceedings of the 10th European Conference on
Evolutionary Computation in Combinatorial Optimisation
(EVOCOP 2010), p. 178-189, Istanbul, Turkey, April 7-9,
2010.

[15] Millán-Ruiz, D. and Hidalgo, J.I.: Algoritmo memético
paralelo para la distribución de esfuerzo en centros de
llamadas dinámicos multiagente y multitarea. (Accepted) To
appear in the 7th Spanish Conference on Meta-heuristics,
Evolutionary Algorithms and Bioinspired Algorithms
(MAEB 2010), Valencia, Spain, September, 2010.

[16] Mladenovic, N. and Hansen, P.: Variable Neighborhood
Search. Computers & Operations Research 24, pp. 1097–
1100, 1997.

[17] Özsu, M. T. and Valduriez, P.: Principles of Distributed
Database Systems. Second Edition, Prentice Hall, ISBN 0-
13-659707-6, 1999.

[18] Pacheco, J.; Millán-Ruiz, D. and Vélez, J.L.: Neural
Networks for Forecasting in a Multi-skill Call Centre.
Proceedings of the 11th International Conference on
Engineering Applications of Neural Networks (EANN 2009),
p. 291-300, London, UK, August 27-29, 2009.

[19] Russell, S.J. and Norvig, P.: Artificial Intelligence: A
Modern Approach. 2nd ed. Upper Saddle River, New Jersey:
Prentice Hall, ISBN 0-13-790395-2, chapter 2, 2003.

[20] Stützle, T.: Iterated local search for the quadratic
assignment problem. European Journal of Operational
Research, Volume 174, Issue 3, 1 November 2006, Pages
1519-1539.

[21] Wooldridge, M.: An Introduction to MultiAgent Systems,
John Wiley & Sons Ltd, paperback, 366 pages, ISBN 0-471-
49691-X, 2002.

52

	

AUTHOR’S	
 INDEX	

	

	

Cabido,	
 35	

Cecilia,	
 17	

Fox,	
 9	

García,	
 17	

Guerrero,	
 17	

Hidalgo,	
 45	

Kothapalli,	
 27	

Millán,	
 45	

Montemayor,	
 35	

Moore,	
 9	

Narayanan,	
 27	

Ohki,	
 1	

Pantrigo,	
 35	

Shah,	
 27	

	

	

53

